Spartan-7 FPGA Development Board AX7050

User Manual

Version Record

Version	Date	Release By	Description
Rev 1.1	2019-04-25	Rachel Zhou	First Release

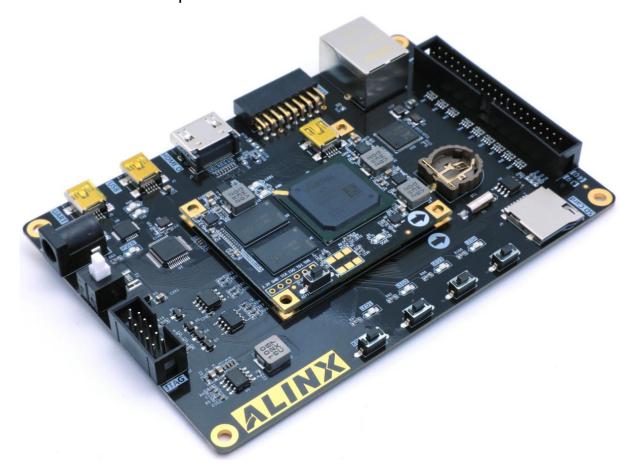
www.alinx.com 2 / 52

Table of Contents

Version	on Record	. 2
Part 1	I: FPGA Development Board Introduction	6
Part 2	2: AC7050 core board	10
F	Part 2.1: AC7050 Core Board Introduction	10
F	Part 2.2: FPGA Chip	.12
F	Part 2.3: Active Differential Crystal	13
F	Part 2.4: DDR3 DRAM	15
F	Part 2.5: QSPI Flash	19
F	Part 2.6: LED Light on Core Board	.20
F	Part 2.7: JTAG Interface	21
F	Part 2.8: Power Interface on the Core Board	22
F	Part 2.9: Board to Board Connectors pin assignment	23
F	Part 2.10: Power Supply	.27
F	Part 2.12: Structure Diagram	30
Part 3	3: Carrier Board	32
F	Part 3.1: Carrier Board Introduction	32
F	Part 3.2: Gigabit Ethernet Interface	.33
F	Part 3.3: HDMI Output Interface	35
F	Part 3.4: USB2.0 Interface	37
F	Part 3.5: SD Card Slot	39
F	Part 3.6: USB to Serial Port	40
F	Part 3.7: EEPROM 24LC04	42
F	Part 3.8 : Real time clock DS1302	.43
F	Part 3.9: Expansion Header	.44
F	Part 3.10: JTAG Interface	46
F	Part 3.11: Camera Module Interface	47
F	Part 3.12: Buttons	48

www.alinx.com 3 / 52

ALINX Spartan-7 FPGA Development Board AX7050 User Manual


Part 3.13: LED Light	49
Part 3.14: Power Supply	
Part 3.15: Structure Diagram	52

www.alinx.com 4 / 52

This Spartan7 FPGA development platform adopts the core board + Carrier Board mode, which is convenient for users to use the core board for secondary development.

In the design of Carrier Board, we have extended a wealth of interfaces for users, such as Gigabit Ethernet interfaces, HDMI Output interface, USB2.0 communication interface, SD card slot, RTC circuit etc. It meets user's requirements for high-speed data exchange, video transmission processing and industrial control. It is a "Versatile" Spartan7 FPGA development platform. It provides the possibility for high-speed video transmission, pre-validation and post-application of network and USB communication and data processing. This product is very suitable for students, engineers and other groups engaged in ARTIX-7FPGA development.

www.alinx.com 5 / 52

Part 1: FPGA Development Board Introduction

The entire structure of the AX7050 FPGA development board is inherited from our consistent core board + Carrier Board model. A high-speed inter-board connector is used between the core board and the Carrier Board.

The core board is mainly composed of FPGA + DDR3 + QSPI FLASH, which undertakes the functions of high-speed data processing and storage of FPGA, high-speed data reading and writing between FPGA and two DDR3s, data bit width is 32 bits, and the bandwidth of the whole system is up to 10Gb. /s(333.3M*32bit); The two DDR3 capacities are up to 8Gbit, which meets the need for high buffers during data processing. The selected FPGA is the XC7S50FGGA484 chip of XILINX's Spartan7 series, in FGGA484 package.

The AX7050 Carrier Board expands its rich peripheral interface, including 1 Gigabit Ethernet interface, 1 HDMI Output interface, 1 USB2.0 interface, 1 UART serial interface, 1 SD card slot, 1 JTAG debug interface, 1 camera interface, 1-way 40-pin expansion header, RTC circuit and EEPROM.

www.alinx.com 6 / 52

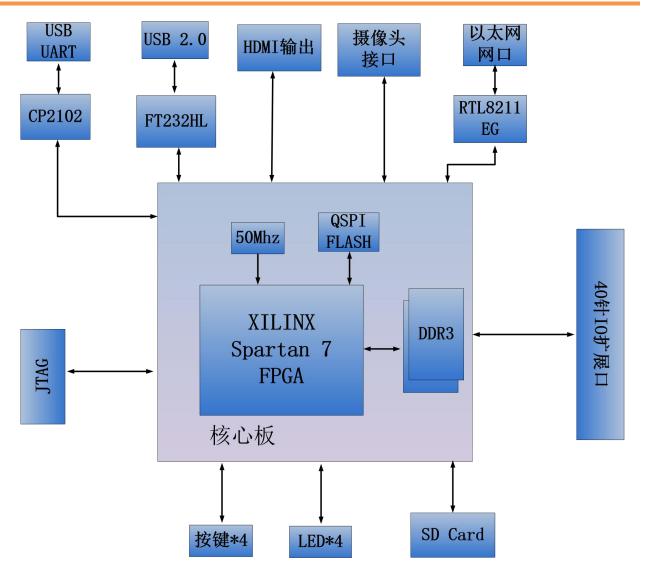


Figure 1-1-1: The Schematic Diagram of the AX7050

Through this diagram, you can see the interfaces and functions that the AX7050 FPGA Development Board contains:

- AC7050 FPGA core board The core board consists of XC7S50 + 2 pieces of 4Gb DDR3 + 128Mb QSPI FLASH. In addition, there is a high precision 50Mhz crystal on the board to provide a stable clock input for the FPGA system.
- ➤ 1-channel 10/100M/1000M Gigabit Ethernet Interface RJ-45 interface The Gigabit Ethernet interface chip uses Realtek's RTL8211EG Ethernet PHY chip to provide network communication services to users. RTL8211EG chip supports 10/100/1000 Mbps network transmission

www.alinx.com 7 / 52

rate. Full duplex and adaptive

1-channel HDMI Output

Use the FPGA's four LVDS differential signals (3-way data plus 1 clock) interface to directly drive the HDMI output, providing different formats of video output interfaces for the FPGA development board

➤ 1-channel USB2.0 Interface

Use FTDI Chip's FT232H single-channel USB chip for USB2.0 high-speed communication between development board and PC, up to 480Mb/s

1-channel Uart to USB interface

1 Uart to USB interface for communication with the computer for user debugging. The serial port chip is the USB-UAR chip of Silicon Labs CP2102GM, and the USB interface is the MINI USB interface.

➤ Micro SD card slot

1-port Micro SD card holder, support SPI mode

≻ EEPROM

Onboard an IIC interface EEPROM 24LC04

> RTC real time clock

Onboard RTC real time clock with battery holder, battery model CR1220

> 2-way 40-pin expansion port

2-way 40-pin 0.1inch spacing expansion port can be connected to various ALINX modules (binocular camera, TFT LCD screen, high-speed AD module, etc.). The expansion port contains 1 channel 5V power supply, 2 channel 3.3V power supply, 3 way ground, 34 IOs port.

CMOS Interface

The 18-pin camera interface that can be connected to 5 million OV5640 camera module of ALINX

www.alinx.com 8 / 52

> JTAG Interface

The 10-pin 0.1 spacing standard JTAG ports for FPGA program download and debugging.

➤ Button

4 buttons; 1 reset button (on the core board)

➤ LED Light

5 user LEDs (1 on the core board and 4 on the Carrier Board)

www.alinx.com 9 / 52

Part 2: AC7050 core board

Part 2.1: AC7050 Core Board Introduction

AC7050 (core board model, the same below) FPGA core board, it is based on XILINX's Spartan 7 series XC7S50FGGA484. It is a high-performance core board with high speed, high bandwidth and high capacity. It is suitable for high-speed data communication, video image processing, high-speed data acquisition, etc.

This AC7050 core board uses two pieces of MICRON's MT41J256M16HA-125 DDR3 chip, each DDR has a capacity of 4Gbit; two DDR chips are combined into a 32-bit data bus width, data clock frequency up to 333.3Mhz, such a configuration can meet the needs of high bandwidth data processing. The model of the 128Mb QSPI FLASH chip on the board is N25Q128, which is used to store the boot image file of the FPGA system

The AC7050 core board expands 114 standard IO ports of 3.3V level, of which 65 IOs can change the level standard by modifying the LDO chip on the core board. For users who need a lot of IO, this core board will be a good choice. Moreover, the routing between the FPGA chip and the interface is equal length and differential processing, and the core board size is only 45*55 (mm), which is very suitable for secondary development.

www.alinx.com 10 / 52

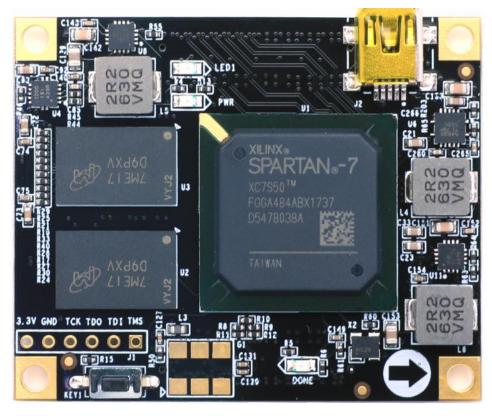


Figure 2-1-1: AC7050 Core Board (Front View)

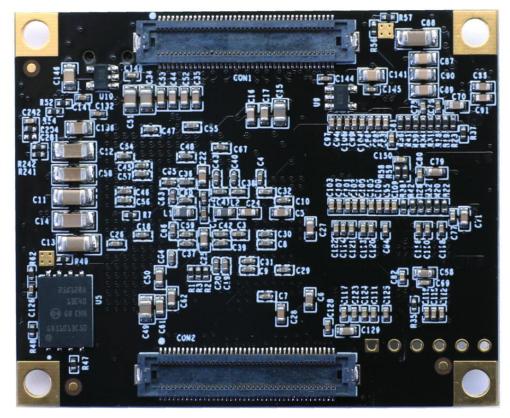


Figure 2-1-2: AC7050 Core Board (Rear View)

www.alinx.com 11 / 52

Part 2.2: FPGA Chip

As mentioned above, the FPGA model we use is XC7S50FGGA484, which belongs to Xilinx's Spartan7 series. The speed grade is 1, and the temperature grade is commercial grade. This model is a FGGA484 package with 484 pins. Xilinx Spartan7 FPGA chip naming rules as below

Figure 2-2-1: The Specific Chip Model Definition of Spartan7 Series

Figure 2-2-2: FPGA chip on board

www.alinx.com 12 / 52

The main parameters of the FPGA chip XC7S50 are as follows

			(1.0V, 0.95V)	on at the Lowe	st Cost and Hig	icser errorma	ice per viate	
		Part Number	XC7S6	XC7S15	XC7S25	XC7S50	XC7S75	XC7S100
		Logic Cells	6,000	12,800	23,360	52,160	76,800	102,400
Logic Resources		Slices	938	2,000	3,650	8,150	12,000	16,000
		CLB Flip-Flops	7,500	16,000	29,200	65,200	96,000	128,000
	Max	x. Distributed RAM (Kb)	70	150	313	600	832	1,100
Memory Resources	Block RAM/FII	FO w/ ECC (36 Kb each)	5	10	45	75	90	120
		Total Block RAM (Kb)	180	360	1,620	2,700	3,240	4,320
Clock Resources	Clock Mgmt	Tiles (1 MMCM + 1 PLL)	2	2	3	5	8	8
1/0.0	Max	c. Single-Ended I/O Pins	100	100	150	250	400	400
I/O Resources	Ma	x. Differential I/O Pairs	48	48	72	120	192	192
		DSP Slices	10	20	80	120	140	160
Embedded Hard IP Resources	Analog Mix	ed Signal (AMS) / XADC	0	0	1	1	1	1
Resources	Configuration AES / HMAC Blocks		0	0	1	1	1	1
		Commercial Temp (C)	-1,-2	-1,-2	-1,-2	-1,-2	-1,-2	-1,-2
Speed Grades		Industrial Temp (I)	-1,-2,-1L	-1,-2,-1L	-1,-2,-1L	-1,-2,-1L	-1,-2,-1L	-1,-2,-1L
		Expanded Temp (Q)	-1	-1	-1	-1	-1	-1
	Package ⁽¹⁾	Body Area (mm)		Ava	ilable User I/O:	3.3V SelectIO™ I	HR I/O	
	CPGA196	8x8	100	100			2000	
	CSGA225	13x13	100	100	150			
	CSGA324	15x15			150	210		
	FTGB196	15x15	100	100	100	100		
	FGGA484	23x23				250	338	338
	FGGA676	27x27					400	400

FPGA power supply system

XILINX Spartan7 FPGA power supplies are Vccint, Vccbram, Vccaux, Vccio. VCCINT is the FPGA core power supply pin, which needs to be connected to 1.0V; VCCBRAM is the power supply pin of FPGA block RAM, connect to 1.0V; VCCAUX is FPGA auxiliary power supply pin, connect 1.8V; Vcco is the voltage of each BANK of FPGA, including BANK0, BANK14, BANK15~16, BANK34~35. On AC7050 FPGA core board, BANK34 and BANK35 need to be connected to DDR3, the voltage connection of BANK is 1.5V, and the voltage of other BANK is 3.3V. The VCCO of BANK15 and BANK16 is powered by the LDO, and can be changed by replacing the LDO chip.

Part 2.3: Active Differential Crystal

The AC7050 core board is equipped with a 50Mhz active differential crystal for the system's main clock of the FPGA. The crystal output is connected to the clock input pin of the FPGA (IO L13P T2 MRCC 14, Pin P15). This clock can be used to drive the user logic in the FPGA. Users can configure the FPGA's internal PLLs to achieve a higher clock.

www.alinx.com 13 / 52

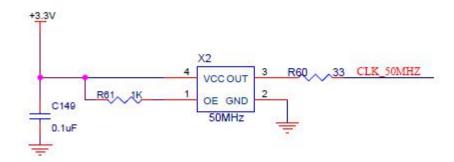


Figure 2-3-1: 50Mhz Active Crystal Oscillator

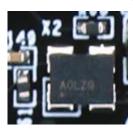


Figure 2-3-2: 50Mhz Active Crystal Oscillator on the Core Board

Clock Pin Assignment

Signal Name	FPGA PIN	
CLK_50MHZ	P15	

In addition, an active differential crystal is reserved on the AC7050 core board. The default is not installed. The differential crystal output is connected to the BANK34 global clock pin MRCC (AA6 and AB6) of the FPGA. Users can install their own clocks of different frequencies as needed.

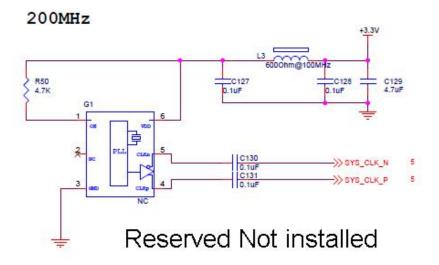


Figure 2-3-3: Reserved Active Differential Crystal

www.alinx.com 14 / 52

Reserved Differential Clock Pin Assignment

Signal Name	FPGA PIN
SYS_CLK_P	AA6
SYS_CLK_N	AB6

Part 2.4: DDR3 DRAM

The FPGA core board AC7050 is equipped with two Micron 4Gbit (512MB) DDR3 MT41J256M16HA-125 chips, model is (compatible with MT41K256M16HA-125). DDR bus width is a total of 32bit. The DDR3 SDRAM has a maximum operating speed of 333.3MHz (data rate 667Mbps). The DDR3 memory system is directly connected to the memory interface of the BANK 34 and BANK35 of the FPGA. The specific configuration of DDR3 SDRAM is shown in Table 2-4-1.

Bit Number	Chip Model	Capacity	Factory
U5,U6	MT41J256M16HA-125	256M x 16bit	Micron

Table 2-4-1: DDR3 SDRAM Configuration

The hardware design of DDR3 requires strict consideration of signal integrity. We have fully considered the matching resistor/terminal resistance, trace impedance control, and trace length control in circuit design and PCB design to ensure high-speed and stable operation of DDR3.

www.alinx.com 15 / 52

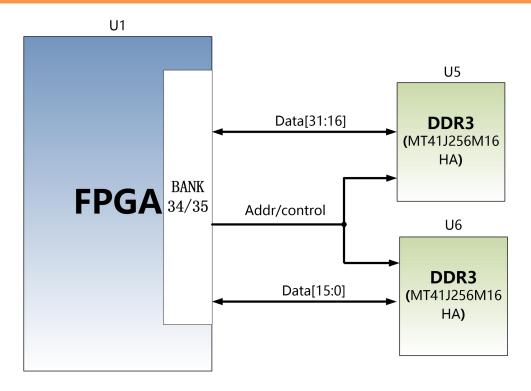


Figure 2-4-1: The DDR3 DRAM Schematic

Figure 2-4-2: The DDR3 on the Core Board

www.alinx.com 16 / 52

DDR3 DRAM pin assignment:

Net Name	FPGA PIN Name	FPGA P/N
DDR3_DQS0_P	IO_L2N_T0_AD12N_35	J2
DDR3_DQS0_N	IO_L3P_T0_DQS_AD5P_35	J1
DDR3_DQS1_P	IO_L9P_T1_DQS_AD7P_35	L5
DDR3_DQS1_N	IO_L9N_T1_DQS_AD7N_35	K5
DDR3_DQS2_P	IO_L15P_T2_DQS_35	M2
DDR3_DQS2_N	IO_L15N_T2_DQS_35	M1
DDR3_DQS3_P	IO_L21P_T3_DQS_35	P6
DDR3_DQS3_N	IO_L21N_T3_DQS_35	N6
DDR3_DQ[0]	IO_L1N_T0_AD4N_35	H2
DDR3_DQ [1]	IO_L4N_T0_35	K2
DDR3_DQ [2]	IO_L2N_T0_AD12N_35	H3
DDR3_DQ [3]	IO_L5P_T0_AD13P_35	H6
DDR3_DQ [4]	IO_L5N_T0_AD13N_35	H5
DDR3_DQ [5]	IO_L6P_T0_35	K6
DDR3_DQ [6]	IO_L2P_T0_AD12P_35	H4
DDR3_DQ [7]	IO_L1P_T0_AD4P_35	J3
DDR3_DQ [8]	IO_L12P_T1_MRCC_35	M8
DDR3_DQ [9]	IO_L11P_T1_SRCC_35	L8
DDR3_DQ [10]	IO_L8N_T1_AD14N_35	L6
DDR3_DQ [11]	IO_L7P_T1_AD6P_35	J8
DDR3_DQ [12]	IO_L10N_T1_AD15N_35	K4
DDR3_DQ [13]	IO_L11N_T1_SRCC_35	K8
DDR3_DQ [14]	IO_L10P_T1_AD15P_35	L4
DDR3_DQ [15]	IO_L7N_T1_AD6N_35	J7
DDR3_DQ [16]	IO_L14P_T2_SRCC_35	L1
DDR3_DQ [17]	IO_L18P_T2_35	P3
DDR3_DQ [18]	IO_L14N_T2_SRCC_35	K1
DDR3_DQ [19]	IO_L16P_T2_35	N4
DDR3_DQ [20]	IO_L17N_T2_35	N1
DDR3_DQ [21]	IO_L17P_T2_35	P1
DDR3_DQ [22]	IO_L13N_T2_MRCC_35	M3
DDR3_DQ [23]	IO_L16N_T2_35	N3
DDR3_DQ [24]	IO_L24N_T3_35	R4

www.alinx.com 17 / 52

DDR3_DQ [25]	IO_L23N_T3_35	R6
DDR3_DQ [26]	IO_L22P_T3_35	P7
DDR3_DQ [27]	IO_L20P_T3_35	N5
DDR3_DQ [28]	IO_L23P_T3_35	R7
DDR3_DQ [29]	IO_L22N_T3_35	N7
DDR3_DQ [30]	IO_L19P_T3_35	P8
DDR3_DQ [31]	IO_L24P_T3_35	R5
DDR3_DM0	IO_L4P_T0_35	K3
DDR3_DM1	IO_L8P_T1_AD14P_35	L7
DDR3_DM2	IO_L13P_T2_MRCC_35	M4
DDR3_DM3	IO_L20N_T3_35	M5
DDR3_A[0]	IO_L10N_T1_34	Y3
DDR3_A[1]	IO_L11N_T1_SRCC_34	U3
DDR3_A[2]	IO_L4P_T0_34	T5
DDR3_A[3]	IO_L2P_T0_34	T7
DDR3_A[4]	IO_L1P_T0_34	W5
DDR3_A[5]	IO_L2N_T0_34	T6
DDR3_A[6]	IO_L7N_T1_34	W1
DDR3_A[7]	IO_L4N_T0_34	U5
DDR3_A[8]	IO_L1N_T0_34	W4
DDR3_A[9]	IO_L14P_T2_SRCC_34	Y6
DDR3_A[10]	IO_L14N_T2_SRCC_34	Y5
DDR3_A[11]	IO_L8P_T1_34	W2
DDR3_A[12]	I O_L9N_T1_DQS_34	U1
DDR3_A[13]	IO_L11P_T1_SRCC_34	U4
DDR3_A[14]	IO_L15P_T2_DQS_34	Y4
DDR3_BA[0]	IO_L8N_T1_34	Y1
DDR3_BA[1]	IO_L9P_T1_DQS_34	U2
DDR3_BA[2]	IO_L10P_T1_34	W3
DDR3_S0	IO_L7P_T1_34	V1
DDR3_RAS	IO_L5P_T0_34	V7
DDR3_CAS	IO_L6P_T0_34	Т8
DDR3_WE	IO_L6N_T0_VREF_34	U8
DDR3_ODT	IO_L5N_T0_34	V6
DDR3_RESET	IO_L17N_T2_34	AA1
DDR3_CLK_P	IO_L12P_T1_MRCC_34	Т3

www.alinx.com 18 / 52

DDR3_CLK_N	IO_L12N_T1_MRCC_34	T2
DDR3_CKE	IO_L3N_T0_DQS_34	V4

Part 2.5: QSPI Flash

The FPGA core board AC7050 is equipped with one 128MBit QSPI FLASH, and the model is N25Q128, which uses the 3.3V CMOS voltage standard. Due to the non-volatile nature of QSPI FLASH, it can be used as a boot device for the system to store the boot image of the system. These images mainly include FPGA bit files, ARM application code, core application code and other user data files. The specific models and related parameters of QSPI FLASH are shown in Table 2-5-1.

Position	Model	Capacity	Factory
U8	N25Q128	128M Bit	Numonyx

Table 2-5-1: QSPI FLASH Specification

QSPI FLASH is connected to the dedicated pins of BANK0 and BANK14 of the FPGA chip. The clock pin is connected to CCLK0 of BANK0, and other data and chip select signals are connected to D00~D03 and FCS pins of BANK14 respectively. Figure 2-5-1 shows the hardware connection of QSPI Flash.

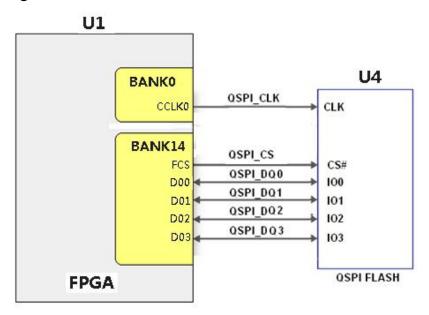


Figure 2-5-1: QSPI Flash Schematic

www.alinx.com 19 / 52

QSPI Flash pin assignments:

Net Name	FPGA PIN Name	FPGA P/N
QSPI_CLK	CCLK_0	D9
QSPI_CS	IO_L6P_T0_FCS_B_14	N17
QSPI_DQ0	IO_L1P_T0_D00_MOSI_14	M21
QSPI_DQ1	IO_L1N_T0_D01_DIN_14	M22
QSPI_DQ2	IO_L2P_T0_D02_14	N21
QSPI_DQ3	IO_L2N_T0_D03_14	N22

Figure 2-5-1: QSPI on the Core Board

Part 2.6: LED Light on Core Board

There are 3 red LED lights on the AC7050 FPGA core board, one of which is the power indicator light (PWR), one is the configuration LED light (DONE), and one is the user LED light. When the core board is powered, the power indicator will illuminate; when the FPGA is configured, the configuration LED will illuminate. The user LED light is connected to the IO of the BANK16, the user can control the light on and off by the program. When the IO voltage connected to the user LED is high, the user LED is off. When the connection IO voltage is low, the user LED will be lit. The schematic diagram of the LED light hardware connection is shown in Figure 2-6-1:

www.alinx.com 20 / 52

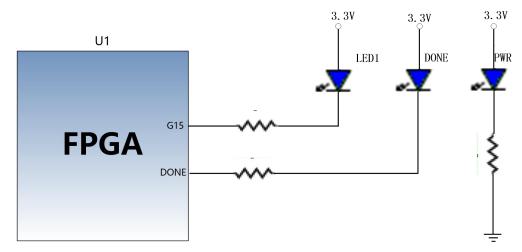


Figure 2-6-1: LED lights on core board Schematic

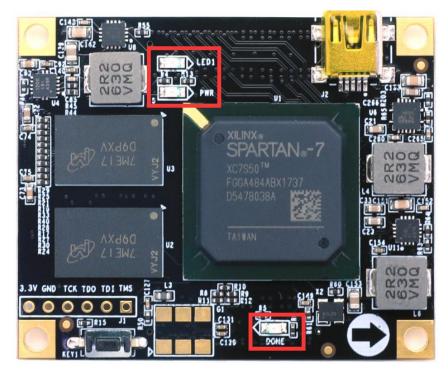


Figure 2-6-2: LED lights on the Core Board

User LEDs Pin Assignment

Signal Name	FPGA Pin Number	Description
LED1	G15	User LED

Part 2.7: JTAG Interface

The JTAG test socket J1 is reserved on the AC7050 core board for JTAG download and debugging when the core board is used alone. Figure 2-7-1 is

www.alinx.com 21 / 52

the schematic part of the JTAG port, which involves TMS, TDI, TDO, TCK., GND, +3.3V these six signals.

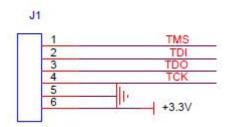


Figure 2-7-1: JTAG Interface Schematic

The JTAG interface J1 on AC7050 FPGA core board uses a 6-pin 2.54mm pitch single-row test hole. If you need to use the JTAG connection to debug on the core board, you need to solder a 6-pin single-row pin header. Figure 2-8-2 shows the JTAG interface J1 on the AC7100 FPGA core board.

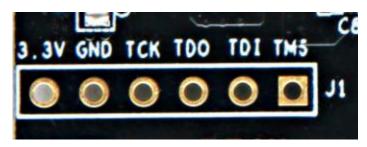


Figure 2-6-2 JTAG Interface on Core Board

Part 2.8: Power Interface on the Core Board

In order to make the AC7050 FPGA core board work alone, the core board is reserved with a Mini USB interface, and the USB port is connected to the USB port of the computer to supply +5V power to the core board. This allows the user to debug the functionality of the AC7050 FPGA core board without the need for Carrier Board. The interface of the Mini USB port on the core board is J2. When the user supplies power to the core board through the Mini USB port (J2), it cannot be powered through the Carrier Board. Otherwise, current conflict may occur and the USB interface of the computer may be burned out.

www.alinx.com 22 / 52

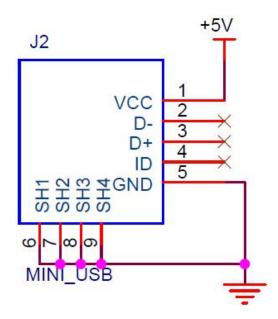


Figure 2-8-1: MINI USB interface schematic

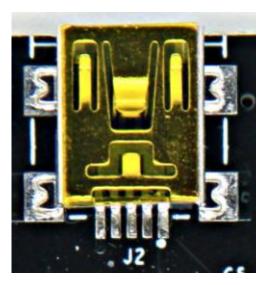


Figure 2-8-2: MINI USB interface on the Core Board

Part 2.9: Board to Board Connectors pin assignment

The core board has a total of two high-speed board to board connectors. The core board uses two 80-pin inter-board connecters to connect to the Carrier Board. The IO port of the FPGA is connected to the two connecters by differential routing. The pin spacing of the connectors is 0.5mm, insert to the board to board connectors on the Carrier Board for high-speed data communication.

www.alinx.com 23 / 52

Board to Board Connectors CON1

The 80-pin board to board connectors CON1, which is used to connect the normal IO of FPGA (which contains 6 pairs of differential interface IO, can be used as LVDS data communication), the default IO level is 3.3V. The pin assignment of the CON1 expansion port is shown in Table 2-9-1.

Pin Assignment of Board to Board Connectors CON1

CON1	Net	FPGA	Input/	CON1	Net	FPGA	Input/
PIN	Name	PIN	Output	PIN	Name	PIN	Output
PIN1	B15_L10_P	E22	I/O	PIN2	B15_L11_P	F21	I/O
PIN3	B15_L10_N	D22	I/O	PIN4	B15_L11_N	F22	I/O
PIN5	B15_L7_P	B21	I/O	PIN6	B15_L20_P	G21	I/O
PIN7	B15_L7_N	B22	I/O	PIN8	B15_L20_N	G22	I/O
PIN9	GND	-	Ground	PIN10	GND	-	Ground
PIN11	B15_L9_P	D21	I/O	PIN12	B15_L12_P	F19	I/O
PIN13	B15_L9_N	C22	I/O	PIN14	B15_L12_N	F20	I/O
PIN15	B15_L8_P	D20	I/O	PIN16	B16_L24_P	E19	I/O
PIN17	B15_L8_N	C20	I/O	PIN18	B16_L24_N	D19	I/O
PIN19	GND	-	Ground	PIN20	GND	-	Ground
PIN21	B16_L20_P	C19	I/O	PIN22	B16_L22_P	E17	I/O
PIN23	B16_L20_N	B19	I/O	PIN24	B16_L22_N	E18	I/O
PIN25	B16_L19_P	D18	I/O	PIN26	B16_L16_P	E15	I/O
PIN27	B16_L19_N	C18	I/O	PIN28	B16_L16_N	E16	I/O
PIN29	GND	-	Ground	PIN30	GND	-	Ground
PIN31	B16_L15_P	D16	I/O	PIN32	B16_L6_P	G14	I/O
PIN33	B16_L15_N	C17	I/O	PIN34	B16_L6_N	F15	I/O
PIN35	B16_L13_P	C15	I/O	PIN36	B16_L4_P	F13	I/O
PIN37	B16_L13_N	C16	I/O	PIN38	B16_L4_N	F14	I/O
PIN39	GND	-	Ground	PIN40	GND	-	Ground
PIN41	B16_L23_N	A20	I/O	PIN42	B16_IO0	G13	I/O
PIN43	B16_L23_P	B20	I/O	PIN44	B16_L17_N	A14	I/O
PIN45	GND	-	Ground	PIN46	B16_L17_P	B14	I/O
PIN47	B16_L21_N	A19	I/O	PIN48	B16_L7_N	C13	I/O
PIN49	B16_L21_P	A18	I/O	PIN50	B16_L7_P	D13	I/O
PIN51	GND	-	Ground	PIN52	GND	-	Ground

www.alinx.com 24 / 52

PIN53	B16_L18_N	A17	I/O	PIN54	B16_L11_P	D14	I/O
PIN55	B16_L18_P	A16	I/O	PIN56	B16_L11_N	D15	I/O
PIN57	GND	-	Ground	PIN58	B16_L12_P	D12	I/O
PIN59	B16_L14_N	B16	I/O	PIN60	B16_L12_N	C12	I/O
PIN61	B16_L14_P	B15	I/O	PIN62	B16_L5_N	E12	I/O
PIN63	GND	-	Ground	PIN64	GND	-	Ground
PIN65	B16_L9_N	A13	I/O	PIN66	B16_L5_P	F12	I/O
PIN67	B16_L9_P	B13	I/O	PIN68	B16_L3_N	D11	I/O
PIN69	GND	-	Ground	PIN70	B16_L3_P	E11	I/O
PIN71	B16_L8_N	A12	I/O	PIN72	B16_L1_N	F11	I/O
PIN73	B16_L8_P	A11	I/O	PIN74	B16_L1_P	G11	I/O
PIN75	GND	-	Ground	PIN76	GND	-	Ground
PIN77	B16_L10_N	C11	I/O	PIN78	B16_L2_N	F10	I/O
PIN79	B16_L10_P	C10	I/O	PIN80	B16_L2_P	G10	I/O

The pins of B16 L23 P/N, B16 L21 P/N, B16 L18 P/N, B16 L14 P/N, B16 L9 P/N and B16 L8 P/N are differentially derived on the PCB and can be used as high-speed LVDS data communication.

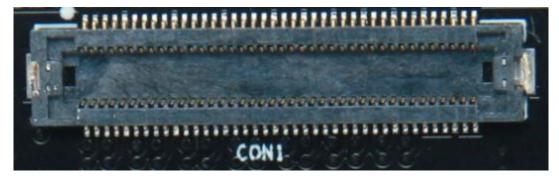


Figure 2-9-1: Board to Board Connectors CON1 on the Core Board

Board to Board Connectors CON2

The 80-pin board to board connectors CON1, which is used to connect to +5V power supply, JTAG interface signal and the normal IO of FPGA (which contains 6 pairs of differential interface IO, can be used as LVDS data communication), the default IO level is 3.3V. The pin assignment of the CON2 expansion port is shown in Table 2-9-2

www.alinx.com 25 / 52

Pin Assignment of Board to Board Connectors CON2

CON2	Net	FPGA	Input/	CON2	Net	FPGA	Input/
PIN	Name	PIN	Output	PIN	Name	PIN	Output
PIN1	+5V	-	Power	PIN2	+5V	-	Power
PIN3	+5V	-	Power	PIN4	+5V	-	Power
PIN5	+5V	-	Power	PIN6	+5V	-	Power
PIN7	+5V	-	Power	PIN8	+5V	-	Power
PIN9	GND	-	Ground	PIN10	GND	-	Ground
PIN11	B14_L4_N	P22	I/O	PIN12	B14_L5_P	N20	I/O
PIN13	B14_L4_P	P21	I/O	PIN14	B14_L5_N	P20	I/O
PIN15	B14_L7_N	T22	I/O	PIN16	B14_L20_N	AA22	I/O
PIN17	B14_L7_P	T21	I/O	PIN18	B14_L20_P	Y22	I/O
PIN19	GND	-	Ground	PIN20	GND	-	Ground
PIN21	B14_L9_P	U22	I/O	PIN22	B14_L22_N	AB21	I/O
PIN23	B14_L9_N	V22	I/O	PIN24	B14_L22_P	AA21	I/O
PIN25	B14_L8_N	W22	I/O	PIN26	B14_L23_P	AB19	I/O
PIN27	B14_L8_P	V21	I/O	PIN28	B14_L23_N	AB20	I/O
PIN29	GND	-	Ground	PIN30	GND	-	Ground
PIN31	B14_L24_N	V19	I/O	PIN32	B14_L19_P	Y20	I/O
PIN33	B14_L24_P	V18	I/O	PIN34	B14_L19_N	AA20	I/O
PIN35	B14_L12_N	U19	I/O	PIN36	B14_L21_P	W18	I/O
PIN37	B14_L12_P	U18	I/O	PIN38	B14_L21_N	Y19	I/O
PIN39	GND	-	Ground	PIN40	GND	-	Ground
PIN41	B14_L15_N	U17	I/O	PIN42	B15_L14_N	M18	I/O
PIN43	B14_L15_P	T17	I/O	PIN44	B15_L14_P	M17	I/O
PIN45	B14_L16_N	R17	I/O	PIN46	GND	-	Ground
PIN47	B14_L16_P	R16	I/O	PIN48	B15_L16_N	K19	I/O
PIN49	B14_IO0	N15	I/O	PIN50	B15_L16_P	K18	I/O
PIN51	GND	-	Ground	PIN52	GND	-	Ground
PIN53	B14_L14_N	R18	I/O	PIN54	B15_L5_N	J16	I/O
PIN55	B14_L14_P	P17	I/O	PIN56	B15_L5_P	K16	I/O
PIN57	B14_L10_N	Y21	I/O	PIN58	GND	-	Ground
PIN59	B14_L10_P	W21	I/O	PIN60	B15_L13_N	L15	I/O
PIN61	B14_L11_N	V20	I/O	PIN62	B15_L13_P	M15	I/O
PIN63	GND	-	Ground	PIN64	GND	-	Ground
PIN65	B14_L11_P	U20	I/O	PIN66	B15_L6_N	J15	I/O

www.alinx.com 26 / 52

PIN67	B14_L18_N	T20	I/O	PIN68	B15_L6_P	K15	I/O
PIN69	B14_L18_P	T19	I/O	PIN70	GND	-	Ground
PIN71	B14_L17_N	R20	N.C.	PIN72	B15_L4_N	G16	I/O
PIN73	B14_L17_P	R19	N.C.	PIN74	B15_L4_P	H16	I/O
PIN75	GND	-	Ground	PIN76	GND	-	Ground
PIN77	TDI	W9	0	PIN78	TCK	G9	0
PIN79	TMS	Y10	0	PIN80	TDO	W10	I

The pins of B15 L14 P/N, B15 L16 P/N, B15 L5 P/N, B15 L13 P/N, B15 L6 P/N and B15 L4 P/N are differentially derived on the PCB and can be used as high-speed LVDS data communication.

Figure 2-9-2: Board to Board Connectors CON1 on the Core Board

Part 2.10: Power Supply

The AC7050 FPGA core board is powered by DC5V via Carrier Board, and it is powered by the Mini USB interface when it is used alone. Please be careful not to supply power to the Mini USB and the Carrier Board at the same time to avoid damage. The power supply design diagram on the board is shown in Figure 2-10-1.

www.alinx.com 27 / 52

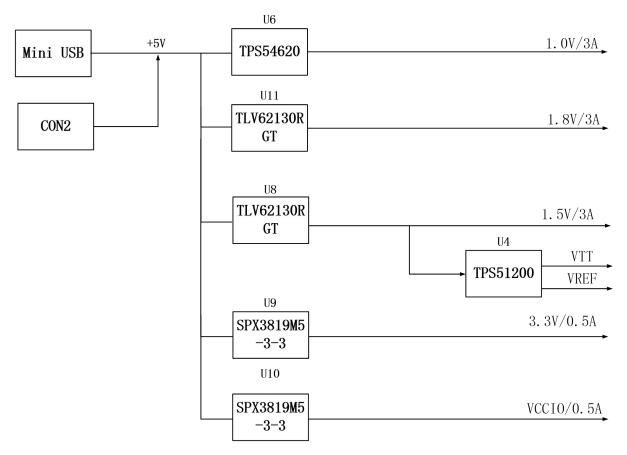


Figure 2-10-1: Power Supply on core board schematic

The core board is powered by +5V, converted to +1.0V by a 1 channel DC/DC power chip TPS54620, and the output current can be as high as 6A. It is converted into +1.8V and +1.5V power supply through 2 DC/DC power chip TLV62130RGT, and the output current can be up to 3A per channel. In addition, VCCIO power supply and +3.3V power supply are generated by 2-way LDO SPX3819M5-3-3. VCCIO mainly supplies power to BANK15 and BANK16 of FPGA. Users can adapt other voltages of BANK15,16 to different voltages by replacing other LDO chips. The standard allows differential signals connected to BANK15 and BANK16 to implement LVDS data communication at different level standards. The functions of each power distribution are shown in the following table:

Power Supply	Function
+1.0V	FPGA Core Voltage

www.alinx.com 28 / 52

+1.8V	FPGA auxiliary voltage
+3.3V	VCCIO of Bank0 and Bank14 of FPGA,QSIP FLASH, Clock Crystal
+1.5V	DDR3, Bank34 and Bank35 of FPGA
VREF,VTT(+0.75V)	DDR3
VCCIO(+3.3V)	FPGA Bank15, Bank16

The power circuit on the AC7050 FPGA core board is shown in Figure 2-11-2 and Figure 2-11-3

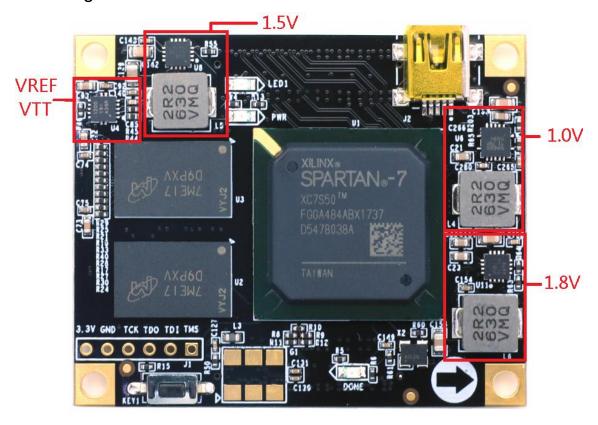


Figure 2-11-2: Power Supply on the AC7050 FPGA Core Board (Top View)

www.alinx.com 29 / 52

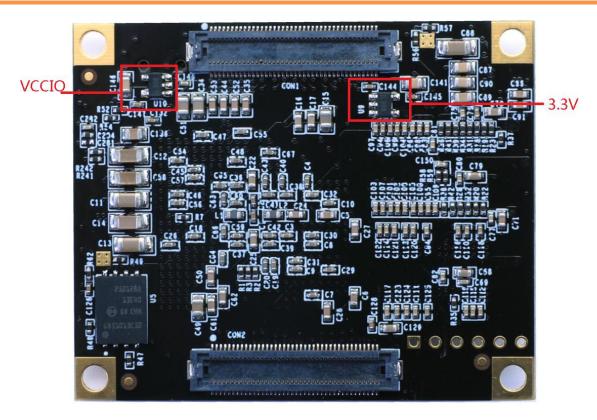


Figure 2-11-3: Power Supply on the AC7050 FPGA Core Board (Bottom View)

Part 2.12: Structure Diagram

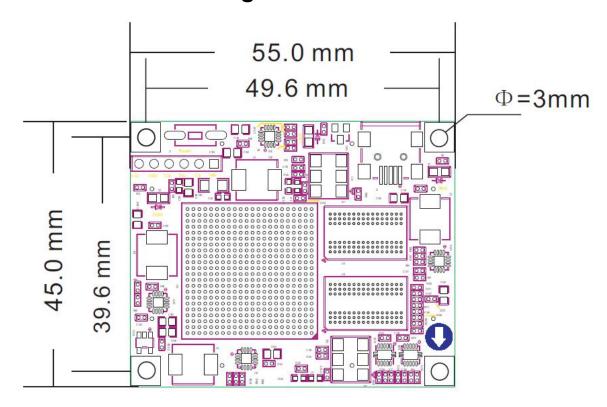


Figure 2-12-1: AC7050 FPGA Core board (Top view)

www.alinx.com 30 / 52

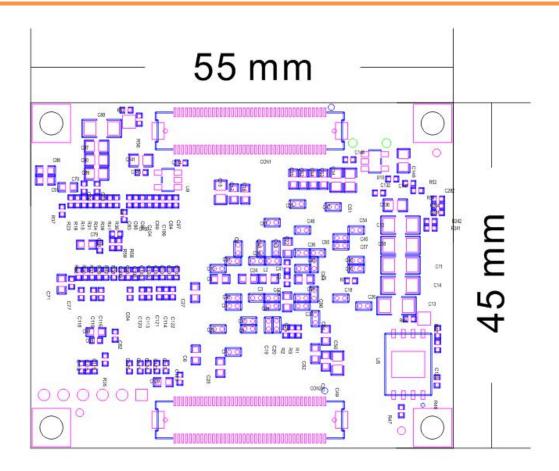
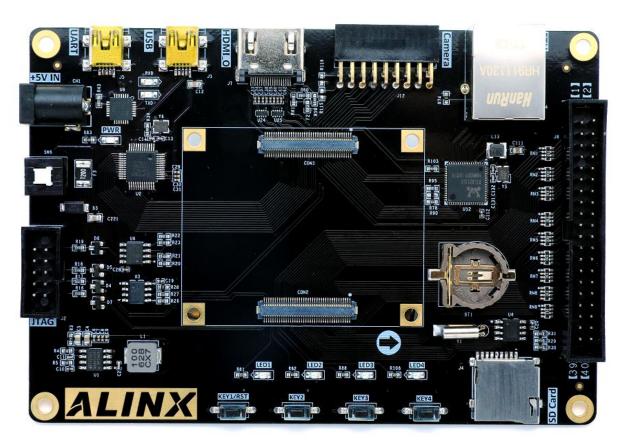



Figure 2-12-2: AC7050 FPGA Core board (Bottom view)

www.alinx.com 31 / 52

Part 3: Carrier Board

Part 3.1: Carrier Board Introduction

Through the previous function introduction, you can understand the function of the Carrier Board part

- ➤ 1-channel 10/100M/1000M Ethernet RJ-45 interface
- > 1-channel HDMI video output interface
- ➤ 1-channel USB 2.0 communication interface
- > 1-channel USB HOST interface
- ➤ 1 SD card slot
- > RTC Real Time Clock Circuit
- **≻** EEPROM
- ➤ 1-channel 40-pin expansion ports
- ➤ 1 Camera Module Interface
- > JTAG debugging interface

www.alinx.com 32 / 52

- > 4 independent buttons
- ➤ 4 user LED lights

Part 3.2: Gigabit Ethernet Interface

The AX7050 FPGA development board provides users with one-channel Gigabit network communication service through the Realtek RTL8211EG Ethernet PHY chip. The RTL8211EG chip supports 10/100/1000 Mbps network transmission rate and data communicates with the FPGA through the RGMII RTL8211EG supports MDI/MDX adaptation, various interface. adaptations, Master/Slave adaptation, and support for MDIO bus for PHY register management.

The RTL8211EG will detect the level status of some specific IOs to determine their working mode after powered on. Table 3-1-1 describes the default setup information after the GPHY chip is powered on.

Configuration Pin	Instructions	Configuration value
PHYAD[2:0]	MDIO/MDC Mode PHY Address	PHY Address 011
SELRGV	3.3V, 2.5V, 1.5/1.8V voltage selection	3.3V
AN[1:0]	Auto-negotiation configuration	(10/100/1000M) adaptive
RX Delay	RX clock 2ns delay	Delay
TX Delay	TX clock 2ns delay	Delay
MODE	RGMII or GMII selection	RGMII

Table 3-2-1: PHY chip default configuration value

When the network is connected to Gigabit Ethernet, the data transmission of FPGA and PHY chip RTL8211EG is communicated through the RGMII bus, the transmission clock is 125Mhz. The receive clock E RXC is provided by the PHY chip, the transmit clock E GTXC is provided by the FPGA, and the data is sampled on the rising edge of the clock.

When the network is connected to 100M Ethernet, the data transmission of FPGA and PHY chip RTL8211EG is communicated through the MII bus, the

www.alinx.com 33 / 52

transmission clock is 25Mhz. Both the receive clock E RXC and the transmit clock E TXC are provided by the PHY chip, and data is sampled on the rising edge of the clock..

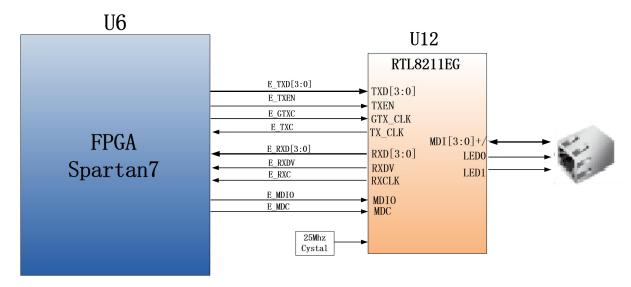


Figure 3-2-1: Gigabit Ethernet Interface Schematic

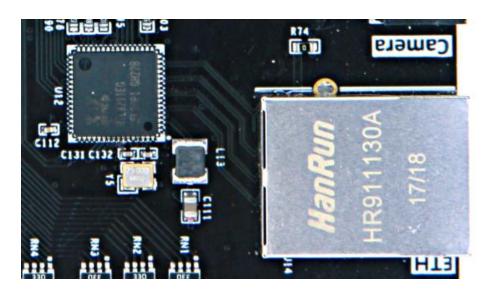


Figure 3-3-2: Gigabit Ethernet interface on the Carrier Board

Ethernet PHY1 Chip Pin assignments are as follows:

Net Name	FPGA Pin Number	Description
E_GTXC	F19	RGMII Transmit Clock
E_TXD0	E19	Transmit Data bit0

www.alinx.com 34 / 52

E_TXD1	D19	Transmit Data bit1
E_TXD2	E17	Transmit Data bit2
E_TXD3	E18	Transmit Data bit3
E_TXEN	F20	Transmit enable signal
E_TXC	E15	100M/10 Send Clock
E_RXC	G22	RGMII Receive clock
E_RXD0	E22	Receive Data Bit0
E_RXD1	F21	Receive Data Bit1
E_RXD2	F22	Receive Data Bit2
E_RXD3	G21	Receive Data Bit3
E_RXDV	D22	Receive data valid signal
E_MDC	E16	MDIO Management Clock
E_MDIO	G14	MDIO Management Data

Part 3.3: HDMI Output Interface

The implementation of the HDMI output interface is to directly drive the HDMI output through the FPGA's four LVDS differential signals (3-way data and one-time clock) interface, providing different formats of video output interfaces for the AX7050 FPGA development board.

Among them, the LVDS differential signal between the HDMI interface and the FPGA is connected by the AC Couple mode, which functions isolating DC. In addition, in the hardware design, each pair of LVDS differential signals is added with a TVS protection tube to prevent damage to the FPGA from external static electricity. The hardware connection of the HDMI output interface is shown in Figure 3-3-1.

www.alinx.com 35 / 52

U6J7 HDMI_CLK_P/N $HDMI_D2_P/N$ **FPGA** HDMI_D1_P/N HDMI_DO_P/N Spartan7

Figure 3-3-1: HDMI Output Interface Schematic

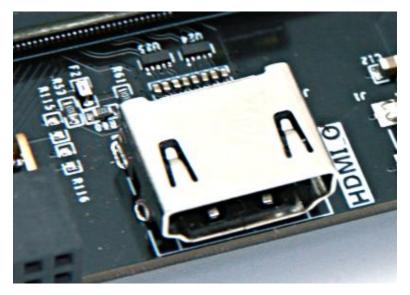


Figure 3-3-2: HDMI Output Interface on the Carrier Board

HDMI Pin Assignment

Net Name	FPGA PIN
HDMI_CLK_P	B20
HDMI_CLK_N	A20
HDMI_D2_N	A12
HDMI_D2_P	A11
HDMI_D1_N	A13

www.alinx.com 36 / 52

HDMI_D1_P	B13
HDMI_D0_N	A17
HDMI_D0_P	A16

Part 3.4: USB2.0 Interface

We used FTDI Chip's FT232H single-channel high-speed USB chip to realize USB2.0 data communication between the FPGA development board and the computer. Maximum USB2.0 high-speed communication (480Mb/s) and full-speed communication (12Mb/s). The data interface supports different data communication modes (FIFO, I2C, SPI, JTAG). After power-on, read the external EEPROM configuration. Determining the data communication mode, you can also easily modify the configuration mode through the PC. The function of the interface pins of the USB chip is multiplexed. For details, please refer to the FT232H chip manual.

The data interface signal of the USB chip FT232H is connected to the IO of the FPGA. The data communication of the FT232H is performed by programming of the FPGA. The hardware connection of the FT232H is connected according to the FT245 synchronous FIFO interface. As shown in Figure 3-4-1.

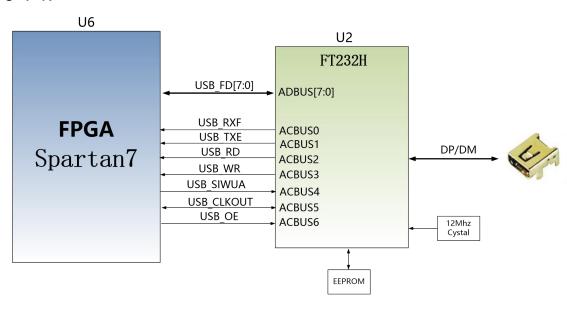


Figure 3-4-1: USB2.0 Interface schematic

www.alinx.com 37 / 52

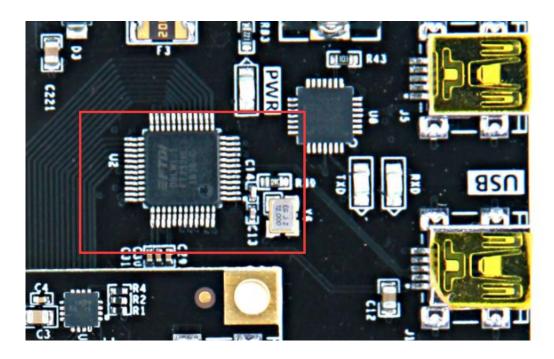


Figure 3-4-2: USB 2.0 part on the Carrier Board

USB 2.0 Pin Assignment

Signal Name	FPGA PIN	Description
USB_FD0	F15	USB2.0 data Bit0
USB_FD1	F13	USB2.0 data Bit1
USB_FD2	F14	USB2.0 data Bit2
USB_FD3	G13	USB2.0 data Bit3
USB_FD4	A14	USB2.0 data Bit4
USB_FD5	B14	USB2.0 data Bit5
USB_FD6	C13	USB2.0 data Bit6
USB_FD7	D13	USB2.0 data Bit7
USB_RXF	D14	Low indicates that the receive FIFO data is readable
USB_TXE	D15	Low indicates that the send FIFO data can be written
USB_RD	D12	Data receive FIFO read signal, low active
USB_WR	C12	Data transmission FIFO write signal, low active
USB_SIWUA	E12	Send immediately/wake up function
USB_CLKOUT	B15	60MHz Clock Output
USB_OE	F12	USB data output enable

www.alinx.com 38 / 52

Part 3.5: SD Card Slot

The SD card (Secure Digital Memory Card) is a memory card based on the semiconductor flash memory process. It was completed in 1999 by the Japanese Panasonic-led concept, and the participants Toshiba and SanDisk of the United States conducted substantial research and development. In 2000, these companies launched the SD Association (Secure Digital Association), which has a strong lineup and attracted a large number of vendors. These include IBM, Microsoft, Motorola, NEC, Samsung, and others. Driven by these leading manufacturers, SD cards have become the most widely used memory card in consumer digital devices.

The SD card is a very common storage device. The SD card that we have extended supports SPI mode. The SD card used is a MicroSD card. The schematic diagram is shown in Figure 3-5-1.

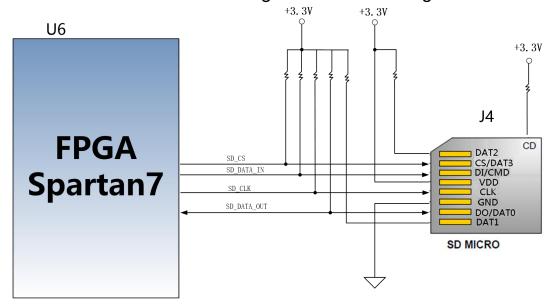


Figure 3-5-1: SD Card Schematic

www.alinx.com 39 / 52

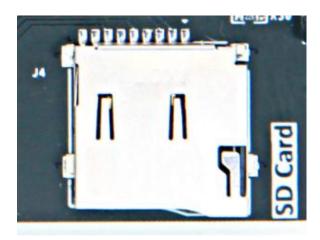


Figure 3-5-2: SD Card Slot on the Carrier Board

SD card slot pin assignment:

SPI Mode		
Signal Name	FPGA Pin	
SD_CS	K19	
SD_CLK	J16	
SD_DATA_IN	K18	
SD_DATA_OUT	K16	

Part 3.6: USB to Serial Port

The AX7050 FPGA development board includes the USB-UAR chip of Silicon Labs CP2102GM. The USB interface uses the MINI USB interface, which can be connected to the USB port of the upper PC for serial data communication with a USB cable. The schematic diagram of the USB Uart circuit design is shown below:

www.alinx.com 40 / 52

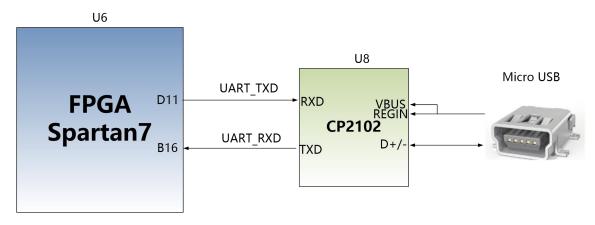


Figure 3-6-1: USB to serial port schematic

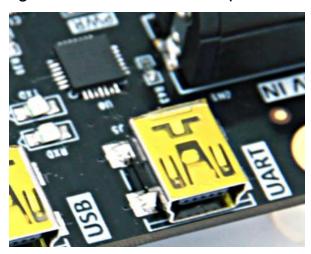


Figure 3-6-2: USB to serial port on the Carrier Board

At the same time, two LED indicators are set for the serial port signal, and the silkscreen on the PCB is TX and RX, indicating that the serial port has data transmission or reception, as shown in the following Figure 3-7-3

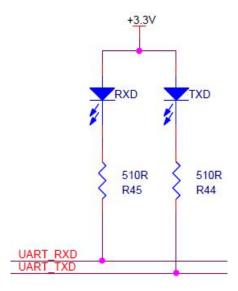


Figure 3-6-3: Serial Port communication LED Indicators Schematic

www.alinx.com 41 / 52

USB to serial port pin assignment:

Signal Name	FPGA PIN
UART1_RXD	B16
UART1_TXD	D11

Part 3.7: EEPROM 24LC04

AX7050 FPGA Carrier Board contains an EEPROM, model 24LC04, and has a capacity of 4Kbit (2*256*8bit). It consists of two 256-byte blocks and communicates via the IIC bus. The onboard EEPROM is to learn how to communicate with the IIC bus. The I2C signal of the EEPROM is connected to the BANK14 IO port on the FPGA side. Figure 3-7-1 below shows the design of the EEPROM

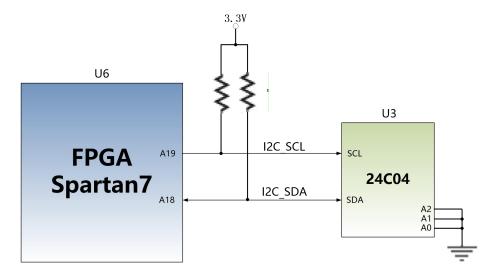


Figure 3-7-1: EEPROM Schematic

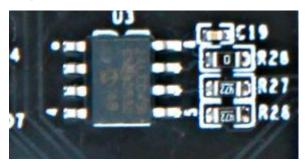


Figure 3-7-2: EEPROM on the Carrier Board

EEPROM Pin Assignment

Net Name	FPGA PIN

www.alinx.com 42 / 52

I2C_SCL	A19
I2C_SDA	A18

Part 3.8 : Real time clock DS1302

The AX7050 FPGA Carrier Board contains a real-time clock RTC chip, model DS1302, which provides a calendar function up to 2099, with days, minutes, minutes, seconds and weeks. If time is needed in the system, then the RTC needs to be involved in the product. It needs to connect a 32.768KHz passive clock to provide an accurate clock source to the clock chip, so that the RTC can accurately provide clock information to the product. At the same time, in order to power off the product, the real-time clock can still operate normally. Generally, a battery is required to supply power to the clock chip. In Figure 3-8-2, the BT1 is the battery holder, and the button battery (model CR1220, voltage is 3V) is placed. After the system is turned off, the button battery can also supply power to the DS1302. This way, regardless of whether the product is powered or not, the DS1302 will operate normally without interruption and provide continuous time information. The interface signal of the RTC is also connected to the BANK16 IO port of the FPGA. Figure 3-8-1 shows the design of the DS1302:



Figure 3-8-1: Real time clock DS1302 Schematic

www.alinx.com 43 / 52

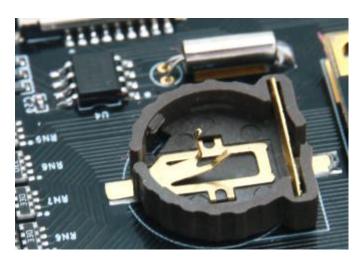


Figure 3-8-2: Real time clock DS1302 on the Carrier Board

Part 3.9: Expansion Header

The AX7050 FPGA Carrier Board is reserved with one 2.54-mm standard 40-pin expansion ports J8, which is used to connect the ALINX modules or the external circuit designed by the user. The expansion port has 40 signals, of which 1-channel 5V power supply, 2-channel 3.3 V power supply, 3-channle ground and 34 IOs. Do not directly connect the IO directly to the 5V device to avoid burning the FPGA. If you want to connect 5V equipment, you need to connect level conversion chip.

A 33 ohm resistor is connected in series between the expansion port and the FPGA connection to protect the FPGA from external voltage or current. The circuit of the expansion port (J8) is shown in Figure 3-9-1.

www.alinx.com 44 / 52

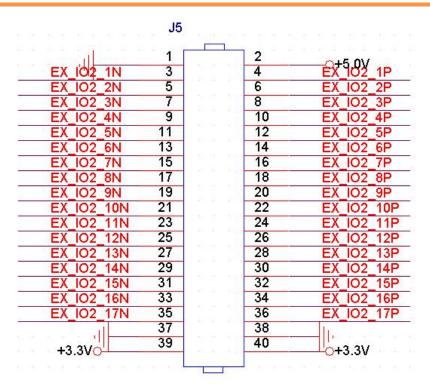


Figure 3-9-1: Expansion header J8 schematic

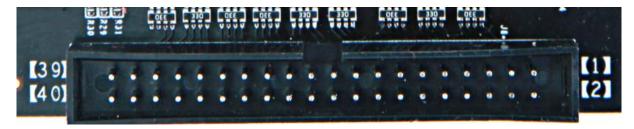


Figure 3-9-2: Expansion header J8 on the Carrier Board

J8 Expansion Header Pin Assignment

Pin Number	FPGA Pin	Pin Number	FPGA Pin
1	GND	2	+5V
3	T20	4	T19
5	V20	6	U20
7	Y21	8	W21
9	R18	10	P17
11	R16	12	N15
13	T17	14	R17
15	U18	16	U17
17	V18	18	U19
19	V21	20	V19
21	V22	22	W22
23	T21	24	U22

www.alinx.com 45 / 52

25	P21	26	T22
27	N20	28	P22
29	AA22	30	P20
31	Y22	32	AB21
33	AB21	34	Y20
35	AA20	36	W18
37	GND	38	GND
39	+3.3V	40	+3.3V

Part 3.10: JTAG Interface

A standard 10-pin 2.54mm pitch JTAG interface is reserved on the AX7050 FPGA Carrier Board for downloading FPGA programs or firmware to FLASH. In order to prevent damage to the FPGA chip caused by hot plugging, a protection diode is added to the JTAG signal to ensure that the voltage of the signal is within the range accepted by the FPGA to avoid damage of the FPGA chip.

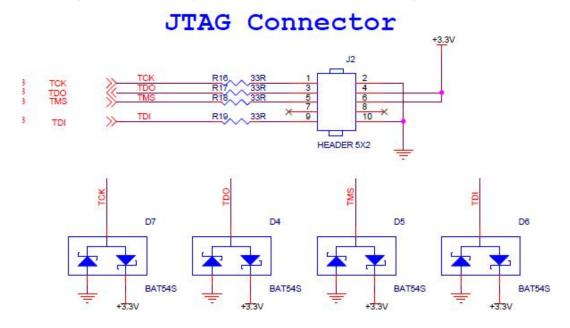


Figure 3-10-1: JTAG Interface Schematic

www.alinx.com 46 / 52

Figure 3-10-2: JTAG Interface on the Carrier Board

Be careful not to hot swap when JTAG cable is plugged and unplugged.

Part 3.11: Camera Module Interface

The AX7050 FPGA Carrier Board includes an 18-pin CMOS camera interface for connecting ALINX's OV5640 camera module for video capture. After acquisition, the monitor can be connected via HDMI or VGA. Regarding the camera selection, the user can purchase as needed. When the interface is not connected to the camera, it can be used as a normal IO port of the FPGA.

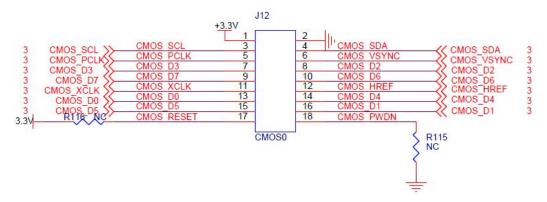


Figure 3-11-1: CMOS Camera Interface Schematic

www.alinx.com 47 / 52

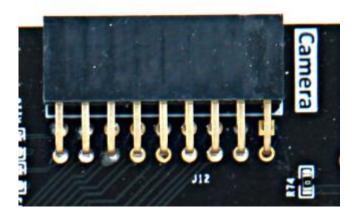


Figure 3-11-2: CMOS Camera Interface on the Carrier Board

5 million CMOS Camera Module (AN5640 module) Pin Assignment

Net Name	FPGA Pin
CMOS_SCL	C22
CMOS_SDA	D21
CMOS_PCLK	B22
CMOS_VSYNC	B21
CMOS_D[3]	C20
CMOS_D[2]	D20
CMOS_D[7]	B19
CMOS_D[6]	C19
CMOS_XCLK	C18
CMOS_HREF	D18
CMOS_D[0]	C17
CMOS_D[4]	D16
CMOS_D[5]	C16
CMOS_D[1]	C15
CMOS_RESET	-
CMOS_PWDN	-

Part 3.12: Buttons

The AX7050 FPGA Carrier Board contains four user buttons KEY1~KEY4. All buttons are connected to the normal IO of the FPGA. The button is active low. When the button is pressed, the IO input voltage of the FPGA is low. When

www.alinx.com 48 / 52

no button is pressed. The IO input voltage of the FPGA is high. The circuit of the button part is shown in Figure 3-12-1.

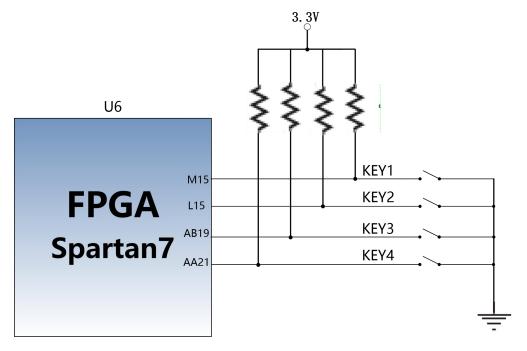


Figure 3-12-1: Button Schematic

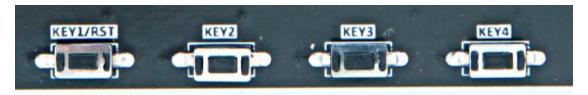


Figure 3-12-2: Four Buttons on the Carrier Board

Buttons Pin Assignment

Net Name	FPGA PIN
KEY1	M15
KEY2	L15
KEY3	AB19
KEY4	AA21

Part 3.13: LED Light

There are seven red LEDs on the AX7050 FPGA Carrier Board, one of which is the power indicator (PWR), two are USB Uart data receiving and transmitting indicators, and four are users LED lights (LED1~LED4). When the board is powered on, the power indicator will light up; User LED1~LED4 are

www.alinx.com 49 / 52

connected to the normal IO of the FPGA. When the IO voltage connected to the user LED is configured low level, the user LED lights up. When the connected IO voltage is configured as high level, the user LED will be extinguished. The schematic diagram of the user LEDs hardware connection is shown in Figure 3-13-1.

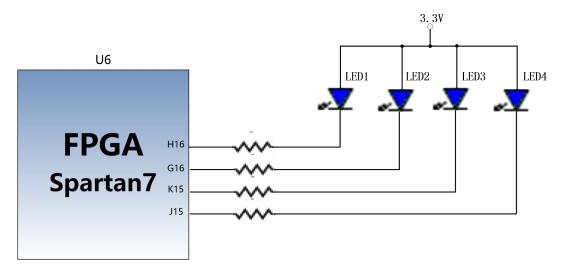


Figure 3-13-1: The User LEDs Schematic

Figure 3-13-2: The User LEDs on the Carrier Board

Pin assignment of user LED lights

Signal Name	FPGA PIN
LED1	H16
LED2	G16
LED3	K15
LED4	J15

Part 3.14: Power Supply

The power input voltage of the AX7050 FPGA development board is DC5V. The Carrier Board converts the +5V voltage to a +3.3V power supply via a 1-way DC/DC power supply chip MP1482. In addition, the +5V power supply on the Carrier Board supplies power to the core board through the inter-board

www.alinx.com 50 / 52

connector. The +3.3V power supply design on the expansion is shown in Figure 3-14-1.

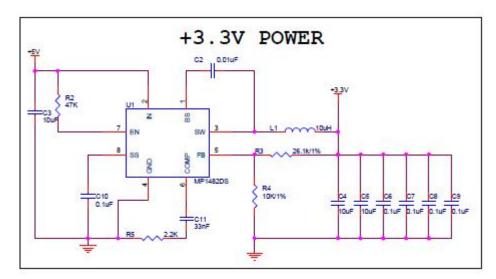


Figure 3-14-1: Power Design Schematic on the Carrier Board

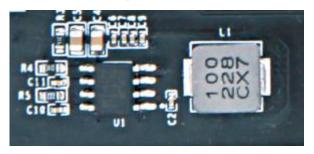


Figure 3-14-2: +3.3V Power circuit on the Carrier Board

www.alinx.com 51 / 52

Part 3.15: Structure Diagram

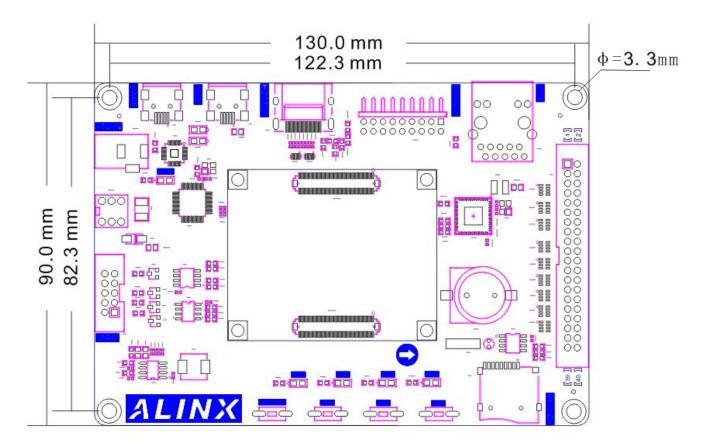


Figure 3-15-1: Structure Diagram of Carrier Board (Top View)

www.alinx.com 52 / 52