# **RFEVM development**

# platform

## **AXRF47 User Manual**

Rev. 1.0





## **Version Record**

| Version | Date      | Release By | Description   |
|---------|-----------|------------|---------------|
| Rev 1.0 | 2024/3/11 | Kathy Xia  | First Release |



## **Table of Contents**

| Version Record                                             | 2  |
|------------------------------------------------------------|----|
| Part 1: Development Board Introduction                     | 4  |
| Part 2: ACRF47 SOM Module                                  | 6  |
| Part 2.1: Introduction                                     | .6 |
| Part 2.2: Zynq Chip                                        | .7 |
| Part 2.3: DDR4 SDRAM                                       | .8 |
| Part 2.4: QSPI Flash                                       | .9 |
| Part 2.5: EEPROM 1                                         | 1  |
| Part 2.6: Clock Configuration1                             | 1  |
| Part 2.7: PS-GTR Interface1                                | 3  |
| Part 2.8: PCIE Gen4 Connector (Requires PCIe carrier card) | 3  |
| Part 2.9: RF-ADC Interface 1                               | 4  |
| Part 2.10: RF-DAC Interface1                               | 4  |
| Part 2.11: Power Source1                                   | 5  |
| Part 2.12: Structure Diagram1                              | 7  |
| Part 2.13: Connector Pin Definition1                       | 7  |
| Part 3: Base Board                                         | 24 |
| Part 3.1: Introduction2                                    | 24 |
| Part 3.2: M.2 Interface2                                   | 24 |
| Part 3.3: USB3.0 Interface2                                | 25 |
| Part 3.4: Gigabit Ethernet Interface2                      | 27 |
| Part 3.5: Micro SD Deck2                                   | 28 |
| Part 3.6: Fiber Optical Interface2                         | 29 |
| Part 3.7: JTAG & UART Interface3                           | 1  |
| Part 3.8: GPS Module (optional)3                           | 2  |
| Part 3.9: Extended IO and LEDs 3                           | 2  |
| Part 3.10: Dip Switch Configuration3                       | 5  |
| Part 3.11: Power Source                                    | 37 |
| Part 3.12: Structural Dimension Diagram                    | 8  |

# Part 1: Development Board Introduction

The AXRF47 development board consists of an ACRF47 SOM and a base board, which are connected by a high-speed inter-board connector.

The ACRF47 module adopts Zynq UltraScale+ RFSoc Gen3 series ZU47DR FPGA main chip of Xilinx Company, which supports 8-channel 14-bit RF-ADC of maximum sampling rate up to 5GSPS and supports 8-channel 14-bit RF-DAC of maximum sampling rate up to 9.84 GSPS. It reduces the complexity of the RF signal processing chain, maximizes input/output channel density without sacrificing bandwidth, takes advantage of heterogeneous processing capabilities, and has lower power consumption (eliminating ADC/DAC components and eliminating the power of the FPGA-to-analog interface). Offering a comprehensive RF signal chain with an ARM Cortex-A53 processing subsystem, UltraScale+ programmable logic, and the highest signal processing bandwidth available in a Zynq UltraScale+ device, which meets the needs of wireless, cable TV access, test and measurement, early warning/radar, and other high-performance RF applications.

The carrier board expands abundant peripheral interfaces for the SOM module, including one M.2 SSD interface, one USB3.0 interface, one Gigabit Ethernet interface, one JTAG/UART interface, one TF card interface, one SFP interface and one QSFP interface.



The following figure shows the structure of the entire development system:

Through Figure 1, we can see the interfaces and functions that the RFEVM development platform can

Figure 1: Structure of AXRF47 Development Board



contain.

#### • ACRF47 SOM

It is composed of ZU47DR + 4GB DDR4 (PS) + 2GB DDR4 (PL) + 1Gb QSPI Flash. In addition, the SOM module provides a dual-crystal oscillator clock source, a single-ended 33.3333MHz active crystal oscillator is provided for the PS system, and a crystal 32.76MHz drives the internal RTC circuit of the RFSOC.

#### • M.2 interface

One PCIe x2 standard M.2 interface is used to connect M.2 SSD.

#### • USB3.0 interface

One USB3.0 interface supports three modes of HOST and SLAVE.

#### • Gigabit Ethernet interface

One 10M/100M/1,000M Ethernet RJ45 interface is used for Ethernet data exchange with computers or other network devices.

#### • JTAG & UART interface

The JTAG & UART debugging interface is a Type-C interface, which is shared by JTAG and UART to Download and debug the FPGA program.

#### • Micro SD deck

One Micro SD deck for storing operating system images and file systems.

#### • QSFP28 optical interface

One QSFP28 optical interface supports communication rate of 40G/100G.

#### • SFP optical interface

One SFP interface supports 10G communication rate.

#### • Expand IO

Three groups of expansion IO, two groups of PL-side expansion IO and one group of PS-side expansion IO, which can be customized by users.

#### • LED

4 expandable LED straight pins for user customization.

#### • Key

A reset button.

#### Part 2.1: Introduction

ALINX

The ZYNQ chip of ACRF47 SOM module is based on Zynq UltraScale+ RFSoC Gen3 series ZU47DR-2FFVE1156I of XILINX.

This module uses six DDR4 chips MT40A512M16 from Micron, in which four DDR4 chips are mounted on the PS side to form a 64-bit data bus width and two pieces of DDR4 are mounted on the PL side to form a 32-bit data bus width. DDR4 capacity is 1GB per chip. DDR4 SDRAM can run up to 1200MHz (2400Mbps data rate). In addition, 1Gbit QSPI FLASH is also integrated on the module for boot storage configuration and system files.

To connect with the base board, the two 400Pin board-to-board connectors of this module expand the USB3.0 interface, Gigabit Ethernet interface, SD card interface, M.2 interface and the remaining MIO interface at the PS end, and expand four pairs of PS MGT high-speed transceiver interfaces; As well as 1 QSFP28 interface, 1 SFP interface and other IO at the PL end.



Figure 2: Front view of ACRF47 module





Figure 3: Back view of ACRF47 module

## Part 2.2: Zynq Chip

The ACRF47 module uses a Zynq UltraScale+ RFSoC Gen3 series chip from Xilinx, model ZU47DR-2FFVE1156I. FPGA resources in the programmable logic section can provide high-throughput digital signal processing (DSP) and IP cores, such as digital up/down conversion (DUC/DDC) cores. FPGA acceleration is made easier by the software radio development architecture application programming interface and the FPGA infrastructure. This helps you get up and running quickly so you can focus on value-added IP. An FPGA system for common functions such as Fast Fourier Transform (FFT) and Finite Impulse Response (FIR) filters is a good place to start. You can then add your own IP blocks to the modular architecture using your preferred hardware description language (HDL). In addition to the FPGA application processing units (APUs) and two real-time processing units (RPUs). For applications that require an on-board embedded operating system for standalone operation.





Figure 4: Block diagram of RFSOM hardware system

ACRF47 can support full differential extraction of AD/DA channels. Users can define RF conditioning circuits as required, support DC and AC coupling, and support PA \ LNA amplifier conditioning circuits. It can also support optional RF front-end, LO converter, duplexer, PA, LNA, etc.

## Part 2.3: DDR4 SDRAM

The ACRF47 module is equipped with six Micron 1GB DDR4 chips, model MT40A512M16GE-083E, in which four DDR4 chips are mounted on the PS side, forming 64bit data bus bandwidth. Two pieces of DDR4 chips are mounted on the PL side to form 32bit data bus bandwidth. The maximum operating speed of DDR4 SDRAM on the PS side can reach 1200MHz (data rate 2400Mbps), and four DDR4 storage systems directly connected to the memory interface of the bank 504 of the PS. The maximum running speed of DDR SDRAM on the PL side can reach 1200MHz (data rate 2400Mbps), and two DDR4 chips are connected to the BANK65 and BANK66 interfaces of the FPGA. The specific configuration of PS-side and PL-side DDR4 SDRAM is shown in the following table.

| Location | Tag number      | Chip model         | Capacity  | Manufacturer |
|----------|-----------------|--------------------|-----------|--------------|
| PS       | UM5,UM6,UM7,UM8 | MT40A512M16GE-083E | 512x16bit | Micron       |
| PL       | UM1,UM2         | MT40A512M16GE-083E | 512x16bit | Micron       |

Table 1: DDR4 SDRAM Configuration

The hardware connection mode of DDR4 on the PS side is shown in figure 5:







*Figure 5: Schematic diagram of PS-side DDR4 SDRAM connection* 

The hardware connection mode of DDR4 SDRAM on the PL is shown in figure 6:



Figure 6 Schematic diagram of PL-side DDR4 SDRAM connection

## Part 2.4: QSPI Flash

The ACRF47 module is equipped with two 512Mbit QUAD SPI FLASH chips to form an 8-bit bandwidth data bus. The FLASH model is MT25QU512ABBIEW9-0SIT, which uses 1.8V CMOS Voltage standard. Due to the non-volatile nature of QSPI FLASH, it can be used as the boot device of the system to store the boot image of the system. These images mainly include FPGA bit files, ARM application code and its user data files. See the following table for the specific model and related features of QSPI Flash.



| Location | Tag number | Chip model            | Capacity | Manufacturer |
|----------|------------|-----------------------|----------|--------------|
| PS       | U5,U6      | MT25QU512ABBIEW9-0SIT | 512M bit | Micron       |

Table 2: QSPI Flash Models and Parameters

The QSPI FLASH is connected to the MIO of BANK500, the PS part of the ZYNQ chip. In the system design, it is necessary to configure these MIO functions of PS end as QSPI Flash interfaces.



Figure 7: QSPI FLASH Connection Diagram

| Signal name | Pin name | Pin number |
|-------------|----------|------------|
| SPIL_SCLK   | PS_MIO0  | J17        |
| SPIL_MO1    | PS_MIO1  | J18        |
| SPIL_MO2    | PS_MIO2  | J16        |
| SPIL_MO3    | PS_MIO3  | K16        |
| SPIL_MO0    | PS_MIO4  | G15        |
| SPIL_CS     | PS_MIO5  | H18        |
| SPIH_CS     | PS_MIO7  | K17        |
| SPIH_MO0    | PS_MIO8  | E15        |
| SPIH_MO1    | PS_MIO9  | F15        |
| SPIH_MO2    | PS_MIO10 | C15        |
| SPIH_MO3    | PS_MIO11 | G16        |
| SPIH_SCLK   | PS_MIO12 | B15        |

Table 3: Configuring Chip Pin Assignments



## Part 2.5: EEPROM

The ACRF47 module has an EEPROM on board, the model is AT24CM01, the capacity is 1Mbit, and it is connected to the PS end for communication through the IIC bus.



Figure 8: EEPROM Hardware Schematic

| Signal name | Pin name | Pin number | Remark           |
|-------------|----------|------------|------------------|
| IIC_SDA     | PS_MIO25 | B17        | I2C Data Signal  |
| IIC_SCL     | PS_MIO24 | A17        | I2C Clock Signal |

Table 4: EEPROM Pin Assignment

## Part 2.6: Clock Configuration

Dual crystal oscillator clock is provided on SOM module. The system clock uses 33.3333MHz active crystal oscillator by default. The package is 3.2x2.5mm. Crystal 32.768 KHz, driving the ACRF47 internal RTC circuit. The schematic diagram of the clock circuit design is shown in the following figure:



Figure 9: Schematic diagram of crystal oscillator

ALINX

The module system uses LMK04828 clock chip to distribute the clock required by each module, and the main crystal oscillator uses 19.2MHz high stability OCXO. Support GTY recovery clock, support input of external reference clock and SYSREF input, and realize parallel connection of multiple modules to form a larger-scale coherent RF channel.



*Figure 10: Schematic diagram of clock distribution connection* 



ALINX

The PS-side GTR high-speed BANK of the ACRF47 module is not used and is pulled out through the connector. It supports a data rate of up to 6.0 Gb/s and can be used as x1, x2 and x4 of PCIE Gen2. As well as can also be used as a SATA interface, supporting 1.5Gb/s, 3.0Gb/s, 6Gb/s data rates, and DP interface and USB3.0 interface and other applications.



Figure 11: Mapping Diagram of GTR High-speed Transceiver at PS End

#### Part 2.8: PCIE Gen4 Connector (Requires PCIe carrier card)

The ACRF47 supports the GTY high-speed transceiver, which enables PCIe x8 Gen4.0 at data rates up to 16.0 Gb/s, as well as 100G optical interface interconnects. It is convenient for users to develop for the second time, and the design risk is small, convenient, and flexible.





Figure 12: High Speed Transceiver Map

#### Part 2.9: RF-ADC Interface

The FPGA chip used in the ACRF47 module is the only single-chip adaptive radio platform of Zynq UltraScale+ RFSoC Gen3 series in the industry, which integrates a 14-bit RF-ADC. The maximum sampling rate is up to 5GSPS, and the VCM signal is also brought out to the connector, making it easier for the user to adjust the common-mode voltage.



Figure 13: RF-to-ADC Interface Schematic

#### Part 2.10: RF-DAC Interface

The FPGA chip used in the core module of ACRF47 is the only single-chip adaptive radio platform of Zynq UltraScale+ RFSoC Gen3 series in the industry. The chip integrates a 14-bit RF-DAC with a maximum sampling rate of 9.85 GSPS.





Figure 14: RF-to-DAC Interface Schematic

#### Part 2.11: Power Source

The ACRF47 module is powered by DC 5V, and the power is supplied to the module through the connector in base board. The ACRF47 module typically consumes 60W. The 5V system power supply drives the FPGA and other circuits on the board by converting different voltages through the buck regulator. The power supply of the ADC and DAC on the board is provided by the linear low-voltage LDO, which has good power supply rejection (PSRR).

The extended IO BANK interface level of the core module is shown in the figure below:

| BANK    | Level (V)                       | Remark                                                                                                  |
|---------|---------------------------------|---------------------------------------------------------------------------------------------------------|
| BANK89  | Supplied from the base<br>board | HD _ BANK supports 1.2 $\sim$ 3.3V (HD I/O only) at ± 5%                                                |
| BANK128 | MGTY                            | PCIE Gen4 signal                                                                                        |
| BANK129 | MGTY                            | PCIE Gen4 signal                                                                                        |
| BANK501 | Supplied from the base<br>board | MIO BANK supports 1.8V, 2.5V, and 3.3V at $\pm$ 5%                                                      |
| BANK502 | Supplied from the base<br>board | MIO BANK supports 1.8V, 2.5V, and 3.3V at $\pm$ 5%                                                      |
| BANK503 | 1.8 V fixed                     | Configure pin output, mode selection, system reset signal                                               |
| BANK505 | PS_MGTR                         | Without any definition, the high-speed signal pin and clock signal are all pulled out to the connector. |

Table 5: Extended IO BANK interface level of the core module

VCC5V@16A VCCINT\_0.85V@60A LTM4662\_X2 FPGA内核电压 VCC2V2@8A 转换电压 LTM4644 VCC1V8@8A FPGA IO电压 AVTT1V2@4A FPGA AVTT电压 AVCC0V9@4A FPGA AVCC LTM4644 AVCC1V2@4A DDR\_IO AVCC3V3@4A CLK VCC3V3@3A **TPS7A5301** LMK04828 rfsom\_core\_board AVCC0V85@3A VCC1V2@4A **TPS7A5301** FPGA IO电压 AUX\_ADC\_1V8@3A VCC2V2@8A **TPS7A5301** FPGA ADC电压 AUX\_DAC\_1V8@3A **TPS7A5301** FPGA DAC电压 AVCC\_ADC\_0V925@3A **TPS7A5301** FPGA ADC电压 AVCC\_DAC\_0V925@3A **TPS7A5301** FPGA DAC电压 AVTT\_DAC\_2V5@3A VCC3V3@4A **TPS7A5301** FPGA DAC电压

The power supply design block diagram of the ACRF47 core module is shown below:

Figure 15: Design block diagram of ACRF47 module power supply

## Part 2.12: Structure Diagram



Figure 16: Front view of ACRF47 core module

## Part 2.13: Connector Pin Definition

Two high-speed expansion ports are extended on the module, and two 400Pin inter-board connectors (J1, J2) are used to connect with the base board. The connector is the LPAM\_50\_01\_0\_L\_08\_2\_K\_TR connector of Samtec.

The connector signals are defined as follows:

| Mark<br>Number | Signal<br>Network | Mark<br>Number | Signal<br>Network | Mark<br>Number | Signal<br>Network | Mark<br>Number | Signal<br>Network |
|----------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|-------------------|
| A1             | GND               | B1             | VCC_5V            | C1             | VCC_5V            | D1             | VCC_5V            |
| A2             | GND               | B2             | VCC_5V            | C2             | VCC_5V            | D2             | VCC_5V            |
| A3             | GND               | B3             | GND               | C3             | GND               | D3             | GND               |
| A4             | GND               | B4             | GND               | C4             | GND               | D4             | GND               |
| A5             | GND               | B5             | GND               | C5             | GND               | D5             | GND               |
| A6             | GND               | B6             | GND               | C6             | GND               | D6             | GND               |
| A7             | GND               | Β7             | BANK89_IO_L1P     | С7             | BANK89_IO_L1N     | D7             | GND               |
| A8             | GND               | B8             | GND               | C8             | GND               | D8             | BANK89_IO<br>_L2P |

| A9  | GND | B9  | BANK89_IO_L3P        | С9  | BANK89_IO_L3N        | D9  | GND                  |
|-----|-----|-----|----------------------|-----|----------------------|-----|----------------------|
| A10 | GND | B10 | GND                  | C10 | GND                  | D10 | BANK89_IO<br>_GC_L5P |
| A11 | GND | B11 | BANK89_IO_GC_L<br>7P | C11 | BANK89_IO_GC_L<br>7N | D11 | GND                  |
| A12 | GND | B12 | GND                  | C12 | GND                  | D12 | BANK89_IO<br>_GC_L6P |
| A13 | GND | B13 | BANK89_IO_L4P        | C13 | BANK89_IO_L4N        | D13 | GND                  |
| A14 | GND | B14 | GND                  | C14 | GND                  | D14 | BANK89_IO<br>_L9P    |
| A15 | GND | B15 | GND                  | C15 | GND                  | D15 | GND                  |
| A16 | GND | B16 | GND                  | C16 | GND                  | D16 | GND                  |
| A17 | GND | B17 | GND                  | C17 | GND                  | D17 | GND                  |
| A18 | GND | B18 | TX_06_P              | C18 | TX_06_N              | D18 | GND                  |
| A19 | GND | B19 | GND                  | C19 | GND                  | D19 | GND                  |
| A20 | GND | B20 | GND                  | C20 | GND                  | D20 | GND                  |
| A21 | GND | B21 | GND                  | C21 | GND                  | D21 | GND                  |
| A22 | GND | B22 | TX_04_P              | C22 | TX_04_N              | D22 | GND                  |
| A23 | GND | B23 | GND                  | C23 | GND                  | D23 | GND                  |
| A24 | GND | B24 | GND                  | C24 | GND                  | D24 | GND                  |
| A25 | GND | B25 | GND                  | C25 | GND                  | D25 | GND                  |
| A26 | GND | B26 | TX_02_P              | C26 | TX_02_N              | D26 | GND                  |
| A27 | GND | B27 | GND                  | C27 | GND                  | D27 | GND                  |
| A28 | GND | B28 | GND                  | C28 | GND                  | D28 | GND                  |
| A29 | GND | B29 | GND                  | C29 | GND                  | D29 | GND                  |
| A30 | GND | B30 | TX_00_P              | C30 | TX_00_N              | D30 | GND                  |
| A31 | GND | B31 | GND                  | C31 | GND                  | D31 | GND                  |
| A32 | GND | B32 | GND                  | C32 | GND                  | D32 | GND                  |
| A33 | GND | B33 | GND                  | C33 | GND                  | D33 | NC                   |
| A34 | GND | B34 | RX_06_P              | C34 | RX_06_N              | D34 | GND                  |
| A35 | GND | B35 | GND                  | C35 | GND                  | D35 | GND                  |



| A36 | GND | B36 | GND     | C36 | GND     | D36 | GND |
|-----|-----|-----|---------|-----|---------|-----|-----|
| A37 | GND | B37 | GND     | C37 | GND     | D37 | NC  |
| A38 | GND | B38 | RX_04_P | C38 | RX_04_N | D38 | GND |
| A39 | GND | B39 | GND     | C39 | GND     | D39 | GND |
| A40 | GND | B40 | GND     | C40 | GND     | D40 | GND |
| A41 | GND | B41 | GND     | C41 | GND     | D41 | NC  |
| A42 | GND | B42 | RX_02_P | C42 | RX_02_N | D42 | GND |
| A43 | GND | B43 | GND     | C43 | GND     | D43 | GND |
| A44 | GND | B44 | GND     | C44 | GND     | D44 | GND |
| A45 | GND | B45 | GND     | C45 | GND     | D45 | NC  |
| A46 | GND | B46 | RX_00_P | C46 | RX_00_N | D46 | GND |
| A47 | GND | B47 | GND     | C47 | GND     | D47 | GND |
| A48 | GND | B48 | GND     | C48 | GND     | D48 | GND |
| A49 | GND | B49 | GND     | C49 | GND     | D49 | GND |
| A50 | GND | B50 | GND     | C50 | GND     | D50 | GND |

Table 5: Signal Definition of J1 Connector

| Mark<br>Number | Signal<br>Network | Mark<br>Number | Signal<br>Network    | Mark<br>Number | Signal<br>Network    | Mark<br>Number | Signal<br>Network |
|----------------|-------------------|----------------|----------------------|----------------|----------------------|----------------|-------------------|
| E1             | VCC_5V            | F1             | VCC_5V               | G1             | VCC_5V               | H1             | GND               |
| E2             | VCC_5V            | F2             | VCC_5V               | G2             | VCC_5V               | H2             | GND               |
| E3             | GND               | F3             | GND                  | G3             | GND                  | H3             | GND               |
| E4             | GND               | F4             | GND                  | G4             | GND                  | H4             | GND               |
| E5             | GND               | F5             | GND                  | G5             | GND                  | H5             | GND               |
| E6             | GND               | F6             | GND                  | G6             | GND                  | H6             | GND               |
| E7             | GND               | F7             | BANK89_IO_<br>L12P   | G7             | BANK89_I<br>O_L12N   | H7             | GND               |
| E8             | BANK89_IO_L2N     | F8             | GND                  | G8             | GND                  | H8             | GND               |
| E9             | GND               | F9             | BANK89_IO_<br>GC_L8P | G9             | BANK89_I<br>O_GC_L8N | H9             | GND               |
| E10            | BANK89_IO_GC_L5N  | F10            | GND                  | G10            | GND                  | H10            | GND               |

| E11 | GND              | F11 | BANK89_IO_<br>L10P | G11 | BANK89_I<br>O_L10N | H11 | GND |
|-----|------------------|-----|--------------------|-----|--------------------|-----|-----|
| E12 | BANK89_IO_GC_L6N | F12 | GND                | G12 | GND                | H12 | GND |
| E13 | GND              | F13 | BANK89_IO_<br>L11P | G13 | BANK89_I<br>O_L11N | H13 | GND |
| E14 | BANK89_IO_L9N    | F14 | GND                | G14 | GND                | H14 | GND |
| E15 | GND              | F15 | GND                | G15 | GND                | H15 | GND |
| E16 | GND              | F16 | GND                | G16 | GND                | H16 | GND |
| E17 | GND              | F17 | GND                | G17 | GND                | H17 | GND |
| E18 | GND              | F18 | TX_07_P            | G18 | TX_07_N            | H18 | GND |
| E19 | GND              | F19 | GND                | G19 | GND                | H19 | GND |
| E20 | GND              | F20 | GND                | G20 | GND                | H20 | GND |
| E21 | GND              | F21 | GND                | G21 | GND                | H21 | GND |
| E22 | GND              | F22 | TX_05_P            | G22 | TX_05_N            | H22 | GND |
| E23 | GND              | F23 | GND                | G23 | GND                | H23 | GND |
| E24 | GND              | F24 | GND                | G24 | GND                | H24 | GND |
| E25 | GND              | F25 | GND                | G25 | GND                | H25 | GND |
| E26 | GND              | F26 | TX_03_P            | G26 | TX_03_N            | H26 | GND |
| E27 | GND              | F27 | GND                | G27 | GND                | H27 | GND |
| E28 | GND              | F28 | GND                | G28 | GND                | H28 | GND |
| E29 | GND              | F29 | GND                | G29 | GND                | H29 | GND |
| E30 | GND              | F30 | TX_01_P            | G30 | TX_01_N            | H30 | GND |
| E31 | GND              | F31 | GND                | G31 | GND                | H31 | GND |
| E32 | GND              | F32 | GND                | G32 | GND                | H32 | GND |
| E33 | GND              | F33 | GND                | G33 | GND                | H33 | GND |
| E34 | GND              | F34 | RX_07_P            | G34 | RX_07_N            | H34 | GND |
| E35 | NC               | F35 | GND                | G35 | GND                | H35 | GND |
| E36 | GND              | F36 | GND                | G36 | GND                | H36 | GND |
| E37 | GND              | F37 | GND                | G37 | GND                | H37 | GND |
| E38 | GND              | F38 | RX_05_P            | G38 | RX_05_N            | H38 | GND |



| E39 | NC  | F39 | GND     | G39 | GND     | H39 | GND |
|-----|-----|-----|---------|-----|---------|-----|-----|
| E40 | GND | F40 | GND     | G40 | GND     | H40 | GND |
| E41 | GND | F41 | GND     | G41 | GND     | H41 | GND |
| E42 | GND | F42 | RX_03_P | G42 | RX_03_N | H42 | GND |
| E43 | NC  | F43 | GND     | G43 | GND     | H43 | GND |
| E44 | GND | F44 | GND     | G44 | GND     | H44 | GND |
| E45 | GND | F45 | GND     | G45 | GND     | H45 | GND |
| E46 | GND | F46 | RX_01_P | G46 | RX_01_N | H46 | GND |
| E47 | NC  | F47 | GND     | G47 | GND     | H47 | GND |
| E48 | GND | F48 | GND     | G48 | GND     | H48 | GND |
| E49 | GND | F49 | GND     | G49 | GND     | H49 | GND |
| E50 | GND | F50 | GND     | G50 | GND     | H50 | GND |

Table 6: J1 Connector Signal Definition

| Mark<br>Number | Signal<br>Network    | Mark<br>Number | Signal<br>Network    | Mark<br>Number | Signal<br>Network    | Mark<br>Number | Signal<br>Network |
|----------------|----------------------|----------------|----------------------|----------------|----------------------|----------------|-------------------|
| E1             | VCCO_501             | F1             | VCC_5V               | G1             | VCC_5V               | H1             | GND               |
| E2             | VCCO_501             | F2             | VCC_501              | G2             | VCC_5V               | H2             | GND               |
| E3             | GND                  | F3             | GND                  | G3             | GND                  | H3             | GND               |
| E4             | GND                  | F4             | CLKIN0_P             | G4             | CLKIN0_N             | H4             | GND               |
| E5             | SYSREF_IN_N          | F5             | GND                  | G5             | GND                  | H5             | GND               |
| E6             | GND                  | F6             | GND                  | G6             | GND                  | H6             | GND               |
| E7             | GND                  | F7             | BANK501_PS_MI<br>O37 | G7             | BANK501_PS<br>_MIO34 | H7             | GND               |
| E8             | BANK501_PS_<br>MIO36 | F8             | GND                  | G8             | GND                  | H8             | GND               |
| E9             | GND                  | F9             | BANK501_PS_MI<br>O41 | G9             | BANK501_PS<br>_MIO38 | H9             | GND               |
| E10            | BANK501_PS_<br>MIO39 | F10            | GND                  | G10            | GND                  | H10            | GND               |
| E11            | GND                  | F11            | BANK501_PS_MI<br>O43 | G11            | BANK501_PS<br>_MIO44 | H11            | GND               |
| E12            | BANK501_PS_<br>MIO45 | F12            | GND                  | G12            | GND                  | H12            | GND               |



| 512 |                        | 540 | BANK501_PS_MI          | C12 | BANK501_PS             | 1.112 |     |
|-----|------------------------|-----|------------------------|-----|------------------------|-------|-----|
| E13 | GND                    | F13 | O48                    | G13 | _MIO51                 | H13   | GND |
| E14 | BANK501_PS_<br>MIO47   | F14 | GND                    | G14 | GND                    | H14   | GND |
| E15 | GND                    | F15 | BANK501_PS_MI<br>O58   | G15 | BANK501_PS<br>_MIO60   | H15   | GND |
| E16 | BANK501_PS_<br>MIO59   | F16 | GND                    | G16 | GND                    | H16   | GND |
| E17 | GND                    | F17 | BANK501_PS_MI<br>O63   | G17 | BANK501_PS<br>_MIO62   | H17   | GND |
| E18 | BANK501_PS_<br>MIO55   | F18 | GND                    | G18 | GND                    | H18   | GND |
| E19 | GND                    | F19 | BANK501_PS_MI<br>O64   | G19 | BANK501_PS<br>_MIO65   | H19   | GND |
| E20 | BANK501_PS_<br>MIO71   | F20 | GND                    | G20 | GND                    | H20   | GND |
| E21 | GND                    | F21 | BANK501_PS_MI<br>O75   | G21 | BANK501_PS<br>_MIO70   | H21   | GND |
| E22 | BANK501_PS_<br>MIO74   | F22 | GND                    | G22 | GND                    | H22   | GND |
| E23 | GND                    | F23 | JTAG_TDI               | G23 | PS_ERROR               | H23   | GND |
| E24 | BANK501_PS_<br>MIO77   | F24 | GND                    | G24 | GND                    | H24   | GND |
| E25 | GND                    | F25 | PS_MODE2               | G25 | PS_MODE0               | H25   | GND |
| E26 | PS_MODE1               | F26 | GND                    | G26 | GND                    | H26   | GND |
| E27 | GND                    | F27 | NC                     | G27 | NC                     | H27   | GND |
| E28 | JTAG_TCK               | F28 | GND                    | G28 | GND                    | H28   | GND |
| E29 | GND                    | F29 | BANK129_MGT_<br>RX1_P  | G29 | BANK129_M<br>GT_RX1_N  | H29   | GND |
| E30 | BANK129_MG<br>T_RX2_N  | F30 | GND                    | G30 | GND                    | H30   | GND |
| E31 | GND                    | F31 | BANK129_MGT_<br>TX2_P  | G31 | BANK129_M<br>GT_TX2_N  | H31   | GND |
| E32 | BANK129_MG<br>T_TX3_N  | F32 | GND                    | G32 | GND                    | H32   | GND |
| E33 | GND                    | F33 | BANK505_MGT_<br>CLK0_P | G33 | BANK505_M<br>GT_CLK0_N | H33   | GND |
| E34 | BANK129_MG<br>T_TX0_N  | F34 | GND                    | G34 | GND                    | H34   | GND |
| E35 | GND                    | F35 | BANK505_MGT_<br>CLK3_P | G35 | BANK505_M<br>GT_CLK3_N | H35   | GND |
| E36 | BANK505_MG<br>T_CLK2_N | F36 | GND                    | G36 | GND                    | H36   | GND |
| E37 | GND                    | F37 | BANK128_MGT_<br>RX1_P  | G37 | BANK128_M<br>GT_RX1_N  | H37   | GND |



| E38 | BANK128_MG<br>T_RX2_N  | F38 | GND                    | G38 | GND                    | H38 | GND |
|-----|------------------------|-----|------------------------|-----|------------------------|-----|-----|
| E39 | GND                    | F39 | BANK128_MGT_<br>TX2_P  | G39 | BANK128_M<br>GT_TX2_N  | H39 | GND |
| E40 | BANK128_MG<br>T_CLK1_N | F40 | GND                    | G40 | GND                    | H40 | GND |
| E41 | GND                    | F41 | BANK128_MGT_<br>TX0_P  | G41 | BANK128_M<br>GT_TX0_N  | H41 | GND |
| E42 | BANK128_MG<br>T_TX1_N  | F42 | GND                    | G42 | GND                    | H42 | GND |
| E43 | GND                    | F43 | BANK505_MGT_<br>TX2_P  | G43 | BANK505_M<br>GT_TX2_N  | H43 | GND |
| E44 | BANK505_MG<br>T_TX1_N  | F44 | GND                    | G44 | GND                    | H44 | GND |
| E45 | GND                    | F45 | BANK505_MGT_<br>RX2_P  | G45 | BANK505_M<br>GT_RX2_N  | H45 | GND |
| E46 | BANK505_MG<br>T_RX3_N  | F46 | GND                    | G46 | GND                    | H46 | GND |
| E47 | GND                    | F47 | BANK129_MGT_<br>CLK1_N | G47 | BANK129_M<br>GT_CLK1_P | H47 | GND |
| E48 | BANK505_MG<br>T_RX0_N  | F48 | GND                    | G48 | GND                    | H48 | GND |
| E49 | GND                    | F49 | GND                    | G49 | GND                    | H49 | GND |
| E50 | GND                    | F50 | GND                    | G50 | GND                    | H50 | GND |

Table 7: Definition of J2 connector signal

# ALINX

## Part 3: Base Board



Figure 17: AXRF47 base board

## Part 3.1: Introduction

Through the previous function introduction, we can understand the functions of the carrier board.

- 1× M.2 interface
- 1× USB3.0 interface
- 1× Gigabit Ethernet interface
- Type-C interface for 1× JTAG & UART
- 1× Micro SD deck
- 1× SFP optical port
- 1× QSFP28 optical port
- 2 sets of PL extended IOx8, 1 set of PS extended IO
- 4× LEDs

## Part 3.2: M.2 Interface

The AXRF47 development board is equipped with a PCIE x2 standard M.2 interface for connecting M.2 SSDs. The M.2 interface uses the M key slot, which only supports PCI-E and does not support SATA. Users need to select the PCIE-type SSD when selecting the SSD.

The PCIE signal is directly connected to the BANK505 PS MGT transceiver of the ZU47DR, and the two TX signals and RX signals are connected to the LANE0 and LANE1 of the MGT in the form of differential signals. The clock of PCIE is provided by a 100MHz differential clock, and the M.2 circuit design diagram is shown below:





Figure 17: M.2 Interface Design Diagram

| Circulation | 7)(1)           | M.2 CONNECTOR J17 |       |  |  |
|-------------|-----------------|-------------------|-------|--|--|
| Signal name | ZYNQ pin number | Pin number        | Name  |  |  |
| MGT_TX0_N   | AA32            | 47                | PETn0 |  |  |
| MGT_TX0_P   | AA31            | 49                | PETp0 |  |  |
| MGT_TX1_N   | W32             | 35                | PETn1 |  |  |
| MGT_TX1_P   | W31             | 37                | PETp1 |  |  |
| MGT_RX0_N   | AB34            | 41                | PERn0 |  |  |
| MGT_RX0_P   | AB33            | 43                | PERp0 |  |  |
| MGT_RX1_N   | Y34             | 29                | PERn1 |  |  |
| MGT_RX1_P   | Y33             | 31                | PERp1 |  |  |
| MGT_CLK0_N  | Y30             |                   |       |  |  |
| MGT_CLK0_P  | Y29             |                   |       |  |  |

Table 8: ZYNQ pin assignment of M.2 interface

#### Part 3.3: USB3.0 Interface

One USB3.0 interface on the AXRF47 carrier board supports HOST and SLAVE operation modes, and the data transmission rate is up to 5.0 Gb/s. USB3.0 is directly connected with the external Type-A interface, and USB2.0 relates to the external USB320C chip through the ULPI interface to realize high-speed USB3.0 and USB2.0 data communication. The schematic diagram of USB3.0 connection is as follows:





|          | 10  | C 1          | 1.       |          |          | · , ,    |        |
|----------|-----|--------------|----------|----------|----------|----------|--------|
| inira    | 19. | Chomatic     | diaaram  | $- \tau$ |          | intorta  | $\sim$ |
|          | 10  | SUPPLICATION |          | ())      | (1))))() | IIIIPIIU | -      |
| 10,011 0 |     | 001101101010 | 0.00.000 | ~,       | 0000.0   |          |        |

| Signal name | Pin name          | ZYNQ pin number | Remark                               |
|-------------|-------------------|-----------------|--------------------------------------|
| USB_TX_N    | BANK505_MGT_TX2_N | U32             | USB3.0 data transmission<br>negative |
| USB_TX_P    | BANK505_MGT_TX2_P | U31             | USB3.0 Data Sending Positive         |
| USB_RX_N    | BANK505_MGT_RX2_N | V34             | USB3.0 data transfer negative        |
| USB_RX_P    | BANK505_MGT_RX2_P | V33             | USB3.0 Data Transfer Positive        |
| USB_DATA0   | BANK502_PS_MIO56  | G23             | USB2.0 Data Bit0                     |
| USB_DATA1   | BANK502_PS_MIO57  | F23             | USB2.0 Data Bit1                     |
| USB_DATA2   | BANK502_PS_MIO54  | H23             | USB2.0 Data Bit2                     |
| USB_DATA3   | BANK502_PS_MIO59  | D23             | USB2.0 Data Bit3                     |
| USB_DATA4   | BANK502_PS_MIO60  | A23             | USB2.0 Data Bit4                     |
| USB_DATA5   | BANK502_PS_MIO61  | E22             | USB2.0 Data Bit5                     |
| USB_DATA6   | BANK502_PS_MIO62  | B23             | USB2.0 Data Bit6                     |
| USB_DATA7   | BANK502_PS_MIO63  | C23             | USB2.0 Data Bit 7                    |
| USB_STP     | BANK502_PS_MIO58  | B22             | USB2.0 stop signal                   |
| USB_DIR     | BANK502_PS_MIO53  | F22             | USB2.0 data direction signal         |
| USB_CLK     | BANK502_PS_MIO52  | G22             | USB2.0 clock signal                  |



| USB_NXT     | BANK502_PS_MIO55 | D22 | USB2.0 next data signal |
|-------------|------------------|-----|-------------------------|
| USB_RESET_N | BANK501_PS_MIO36 | C18 | USB2.0 reset signal     |

Table 9: USB Interface Pin Assignment

## Part 3.4: Gigabit Ethernet Interface

The AXRF47 carrier board has a 1-way Gigabit Ethernet interface connected to the PS side. The Ethernet chip uses the fourth generation AR8035 chip of Atheros Company to provide network communication services for users. The Ethernet PHY chip at the PS end is connected to the MIO of BANK502 at the PS end of ZYNQ. AR8035 chip supports 10/100/1,000 Mbps network transmission rate and communicates with MAC layer of ZYNQ system through RGMII interface. The schematic diagram of Gigabit Ethernet PHY chip connection is shown in the figure below:



Figure 19: Ethernet Connection Diagram

| Circuit a sure s |                  | Diamata    | AR8035 PHY U12 |          |  |
|------------------|------------------|------------|----------------|----------|--|
| Signai name      | Pin name         | Pin number | Pin number     | Pin name |  |
| PHY_TX_CLK       | BANK502_PS_MIO64 | D24        | 33             | GTX_CLK  |  |
| PHY_TXD0         | BANK502_PS_MIO65 | C24        | 34             | TXD0     |  |
| PHY_TXD1         | BANK502_PS_MIO66 | F24        | 35             | TXD1     |  |
| PHY_TXD2         | BANK502_PS_MIO67 | F25        | 36             | TXD2     |  |
| PHY_TXD3         | BANK502_PS_MIO68 | E25        | 37             | TXD3     |  |
| PHY_TX_CTRL      | BANK502_PS_MIO69 | E24        | 32             | TX_EN    |  |
| PHY_RX_CLK       | BANK502_PS_MIO70 | B25        | 31             | RX_CLK   |  |
| PHY_RXD0         | BANK502_PS_MIO71 | A24        | 29             | RXD0     |  |
| PHY_RXD1         | BANK502_PS_MIO72 | C25        | 28             | RXD1     |  |

| PHY_RXD2    | BANK502_PS_MIO73 | A25 | 26 | RXD2  |
|-------------|------------------|-----|----|-------|
| PHY_RXD3    | BANK502_PS_MIO74 | C26 | 25 | RXD3  |
| PHY_RX_CTRL | BANK502_PS_MIO75 | B26 | 30 | RX_DV |
| PHY_MDC     | BANK502_PS_MIO76 | E26 | 40 | MDC   |
| PHY_MDIO    | BANK502_PS_MIO77 | D26 | 39 | MDIO  |
| PS_POR_B    | BANK501_PS_MIO44 | C20 | 1  | RSTn  |

Table 10: AR8035 PHY connected to XCZU47DR RFSoC

## Part 3.5: Micro SD Deck

The AXRF47 carrier board includes a Micro SD card interface to provide user access to SD card memory for storing BOOT programs, the Linux operating system kernel, file systems, and other user data files. The SD card IO signal is connected to the MIO signal of PS BANK501, and the connection between PS and SD card connectors is shown in Figure 20.



*Figure 20: Schematic diagram of SD card connection* 

| Signal name | Pin name         | Pin number | Remark            |
|-------------|------------------|------------|-------------------|
| SDIO_CLK    | BANK501_PS_MIO51 | B21        | SD clock signal   |
| sdio_cmd    | BANK501_PS_MIO50 | A22        | SD command signal |
| SDIO_DAT0   | BANK501_PS_MIO46 | A20        | SD Data Bit 0     |
| SDIO_DAT1   | BANK501_PS_MIO47 | D21        | SD Data Bit 1     |
| SDIO_DAT2   | BANK501_PS_MIO48 | C21        | SD data Bit2      |
| SDIO_DAT3   | BANK501_PS_MIO49 | E21        | SD Data Bit 3     |



| SDIO_DETECT | BANK501_PS_MIO45 | B20 | SD card detection signal |
|-------------|------------------|-----|--------------------------|
|-------------|------------------|-----|--------------------------|

Table 11. SD Card Pin Assignment

## Part 3.6: Fiber Optical Interface

There are two optical interfaces, one SFP interface and one QSFP28 interface on the AXRF47 carrier board. The two optical fiber interfaces are respectively connected with the GTY transceivers on BANK128 and BAN129 of ZYNQ. The two reference clocks of BANK128 are 156.25 MHz provided by the LMK04828 chip of the ACRF47 module and the differential crystal oscillator on the carrier board respectively.

The QSFP28 interface connection diagram is shown in the figure below:



Figure 21: Schematic diagram of fiber design

| Signal name | ZYNQ pin name | ZYNQ pin number | Remark |
|-------------|---------------|-----------------|--------|
| QSFP_RX0_N  | MGTYRXN0_128  | P34             |        |
| QSFP_RX0_P  | MGTYRXP0_128  | P33             |        |



| QSFP_RX1_N | MGTYRXN1_128 | M34 |  |
|------------|--------------|-----|--|
| QSFP_RX1_P | MGTYRXP1_128 | M33 |  |
| QSFP_RX2_N | MGTYRXN2_128 | K34 |  |
| QSFP_RX2_P | MGTYRXP2_128 | K33 |  |
| QSFP_RX3_N | MGTYRXN3_128 | H34 |  |
| QSFP_RX3_P | MGTYRXP3_128 | H33 |  |
| QSFP_TX0_N | MGTYTXN0_128 | N31 |  |
| QSFP_TX0_P | MGTYTXP0_128 | N30 |  |
| QSFP_TX1_N | MGTYTXN1_128 | L31 |  |
| QSFP_TX1_P | MGTYTXP1_128 | L30 |  |
| QSFP_TX2_N | MGTYTXN2_128 | J31 |  |
| QSFP_TX2_P | MGTYTXP2_128 | J30 |  |
| QSFP_TX3_N | MGTYTXN3_128 | G31 |  |
| QSFP_TX3_P | MGTYTXP3_128 | G30 |  |

Table 12: QSFP interface pin assignment

| ZYNQ pin name   | ZYNQ pin number | Remark                                                            |
|-----------------|-----------------|-------------------------------------------------------------------|
| MGTREFCLK0N_128 | M29             | SDCLKOUT3 output for LMK04828<br>Default configuration 156.25 MHz |
| MGTREFCLK0P_128 | M28             | SDCLKOUT3 output for LMK04828<br>Default configuration 156.25 MHz |
| MGTREFCLK1N_128 | K29             | Carrier board 156.25 MHz differential output                      |
| MGTREFCLK1P_128 | K28             | Carrier board 156.25 MHz differential output                      |
| MGTREFCLK0N_129 | H29             | SDCLKOUT1 output for LMK04828<br>Default configuration 156.25 MHz |
| MGTREFCLK0P_129 | H28             | SDCLKOUT1 output for LMK04828<br>Default configuration 156.25 MHz |

Table 13: BANK128 Reference Clock Distribution

| Signal name ZYNQ pin name ZYNQ pin number | Remark |
|-------------------------------------------|--------|
|-------------------------------------------|--------|



| SFP_RX0_N | MGTYRXN0_129 | F34 |  |
|-----------|--------------|-----|--|
| SFP_RX0_P | MGTYRXP0_129 | F33 |  |
| SFP_TX0_N | MGTYTXN0_129 | E31 |  |
| SFP_TX0_P | MGTYTXP0_129 | E30 |  |

Table 14: SFP Interface Pin Assignment

#### Low speed control IO processing:

| QSFP low speed IO signal name | Remark        | SFP low speed IO signal name | Remark        |
|-------------------------------|---------------|------------------------------|---------------|
| SCL                           | Pull up 3.3 V | TX_FULT                      | Pull up 3.3 V |
| SDA                           | Pull up 3.3 V | TX_DISABLE                   | Grounding     |
| ModSelL                       | Pull up 3.3 V | RATE_SELECT0                 | Pull up 3.3 V |
| ResetL                        | Pull up 3.3 V | RATE_SELECT1                 | Pull up 3.3 V |
| ModPrsl                       | Pull up 3.3 V | LOS                          | Pull up 3.3 V |
| intL                          | Pull up 3.3 V |                              |               |
| LPMode                        | Grounding     |                              |               |

Table 15: Optical fiber low-speed IO signal processing mode

## Part 3.7: JTAG & UART Interface

A JTAG & UART interface is reserved on the AXRF47 carrier board, which is used to download and debug FPGA programs or solidify programs to FLASH. Here we use FTDI's fifth USB device chip FT2232H chip, which is a USB2.0 high-speed to UART/FIFO chip with two multi-protocol synchronous serial engines allowing the use of JTAG. Capable of being configured over a variety of industry standard serial or parallel interfaces.

The schematic diagram of JTAG & UART connection is shown in the figure below:



Figure 22: JTAG & UART Connector Connection Diagram



| Signal name | Pin name         | Pin number | Remark              |
|-------------|------------------|------------|---------------------|
| UART0_TX    | BANK501_PS_MIO43 | A19        | PS Uart data output |
| UART0_RX    | BANK501_PS_MIO42 | E20        | PS Uart data input  |

Table 16: UART Interface Pin Assignment

## Part 3.8: GPS Module (optional)

The AXRF47 carrier board can be optionally equipped with the GPS module NEO-M8N, a high-performance GNSS receiver module with superior positioning accuracy and sensitivity. The module uses the latest u-blox M8 chip, supports GPS, GLONASS, BeiDou, Galileo and other satellite systems, and can provide global positioning data. The schematic diagram of GPS connection is shown in the figure below:



Figure 23: Schematic diagram of GPS module connection

| Signal name | Pin name        | Pin number | Remark    |
|-------------|-----------------|------------|-----------|
| GPS_PPS_1S  | IO_L10P_AD2P_89 | K11        | TIMEPLUSE |
| GPS_TXD     | IO_L9P_AD3P_89  | H10        | TXD_MISO  |

Table 17: GPS Module Pin Assignment

#### Part 3.9: Extended IO and LEDs

The AXRF47 carrier board is extended with two sets of PL-side IO (x8) and one set of PS-side IO (x10).

#### AXRF47 User Manual



|           |        | J9    |
|-----------|--------|-------|
| USER_IOB0 | 1      |       |
| USER_IOB1 | 2      |       |
| USER_IOB2 | 3      |       |
| USER_IOB3 | 4      |       |
| USER_IOB4 | 5      |       |
| USER_IOB5 | 6      |       |
| USER_IOB6 | 7      |       |
| USER_IOB7 | 8      |       |
| DCND I    | 9      |       |
| VCC 12VI  | 10     |       |
| VCC_12V   |        |       |
|           | JST_2p | 0_10P |





Figure 24: Extended IO Circuit Connection Diagram

| Signal name | Pin name            | Pin number | Remark |
|-------------|---------------------|------------|--------|
| USER_IO0    | IO_L6N_HDGC_AD6N_89 | E9         |        |
| USER_IO1    | IO_L5P_HDGC_AD7P_89 | E11        |        |
| USER_IO2    | IO_L5N_HDGC_AD7N_89 | D11        |        |
| USER_IO3    | IO_L4P_AD8P_89      | D9         |        |
| USER_IO4    | IO_L4N_AD8N_89      | С9         |        |
| USER_IO5    | IO_L3P_AD9P_89      | A10        |        |
| USER_IO6    | IO_L3N_AD9N_89      | A9         |        |
| USER_IO7    | IO_L2P_AD10P_89     | C10        |        |

Table 18: J11 Extended IO Pin Assignment

| Signal name | Pin name        | Pin number | Remark |
|-------------|-----------------|------------|--------|
| USER_IOB0   | IO_L10N_AD2N_89 | K10        |        |

| USER_IOB1 | IO_L11P_AD1P_89     | J11 |  |
|-----------|---------------------|-----|--|
| USER_IOB2 | IO_L11N_AD1N_89     | H11 |  |
| USER_IOB3 | IO_L8P_HDGC_AD4P_89 | G11 |  |
| USER_IOB4 | IO_L8N_HDGC_AD4N_89 | G10 |  |
| USER_IOB5 | IO_L7P_HDGC_AD5P_89 | F10 |  |
| USER_IOB6 | IO_L7N_HDGC_AD5N_89 | F9  |  |
| USER_IOB7 | IO_L6P_HDGC_AD6P_89 | E10 |  |

Table 19: J9 Extended IO Pin Assignment

| Signal name      | Pin name | Pin number | Remark |
|------------------|----------|------------|--------|
| BANK501_PS_MIO30 | PS_MIO30 | H20        |        |
| BANK501_PS_MIO31 | PS_MIO31 | G20        |        |
| BANK501_PS_MIO32 | PS_MIO32 | F19        |        |
| BANK501_PS_MIO33 | PS_MIO33 | G21        |        |
| BANK501_PS_MIO34 | PS_MIO34 | D18        |        |
| BANK501_PS_MIO35 | PS_MIO35 | F20        |        |
| BANK501_PS_MIO38 | PS_MIO38 | B18        |        |
| BANK501_PS_MIO39 | PS_MIO39 | D19        |        |
| BANK501_PS_MIO40 | PS_MIO40 | A18        |        |
| BANK501_PS_MIO41 | PS_MIO41 | C19        |        |

Table 20: J10 Extended IO Pin Assignment

Four user-defined LEDs can be extended on the AXRF47 card, and four extended IOs are introduced 2 PIN TJC3 straight on the header.





Figure 25: Schematic diagram of LED lamp expansion IO circuit

| Signal name | Pin name        | Pin number | Remark |
|-------------|-----------------|------------|--------|
| LEDG0       | IO_L9N_AD3N_89  | H9         |        |
| LEDG1       | IO_L1N_AD11N_89 | B11        |        |
| LEDG2       | IO_L2N_AD10N_89 | B10        |        |
| LEDG3       | IO_L1P_AD11P_89 | C11        |        |

Table 21: LED lamp expansion IO pin assignment

## Part 3.10: Dip Switch Configuration

The AXRF47 development board has a 2-position dial switch SWC1 and two jumper caps to configure the boot mode of the ZYNQ system. The RFEVM development platform supports three boot modes, namely JTAG debug mode, QSPI FLASH and SD card boot mode. The ACRF47 chip will detect the level of (PS \_ MODE0 ~ 3) after power-on to determine the startup mode. The user can select a different start mode through the dial switch SWC1.



Figure 26: PS \_ MODE Circuit Schematic

ALINX

The default configuration is that SWC3 is short-circuited through the jumper cap, i.e. PS \_ MODE0 = 0, and SWC2 is pulled up by default, i.e. PS\_MODE1=1.



Figure 27 jumper cap diagram

The SWC1startup mode configuration is shown in the following table.

| Dial SWC1 position (1,2) | MODE[3:0] | Start mode |
|--------------------------|-----------|------------|
| ON, ON                   | 0000      | JTAG       |



| ON, ON   | 0010 | QSPI |
|----------|------|------|
| ON, OFF  | 0110 | ЕММС |
| OFF, OFF | 1110 | SD   |

Table 22: SWC1 Startup Mode Configuration

Note: In the SD card boot mode, the JTAG function can still be used normally.

#### Part 3.11: Power Source

The power input voltage of the AXRF47 development board is DC12V, which is generated by multiple power chips on the carrier board +5V, +1.8V, +3.3V power supply.

The power supply design block diagram is shown in the following figure:



Figure 28: AXRF47 Carrier Board Power Interface Section





Figure 29: Front view of AXRF47

ALINX