

CA-IS3062 5kV_{RMS} Isolated CAN Transceivers with Integrated DC-DC Converter

1 Features

- Meets the ISO 11898-2 physical layer standards
- Integrated DC-DC converter for cable-side power
- Integrated protection increases robustness
 - 5kV_{RMS} withstand isolation voltage for 60s (galvanic isolation)
 - ±150kV/μs typical CMTI
 - ±58V fault-tolerant CANH and CANL
 - ±30V extended common-mode input range (CMR)
 - Transmitter dominant timeout prevents lockup, data rates down to 5.5 kbps
 - Thermal shutdown
 - Wide operating temperature range: -40°C to 125°C
- Date rate is up to 1Mbps
- Operating from a single 5V supply on the logic side, CA-IS3062VW provides individual logic supply input
- Low loop delay: 150ns (typical), 210ns (maximum)
- Ideal passive behavior when unpowered
- Wide-body SOIC16-WB(W) package
- Safety regulatory approvals (pending)
 - VDE 0884-11 reinforced isolation
 - UL according to UL1577
 - IEC 60950-1, IEC62368-1, IEC60601-1, IEC 61010-1, and GB4843.1-2011 reinforced insulation certifications

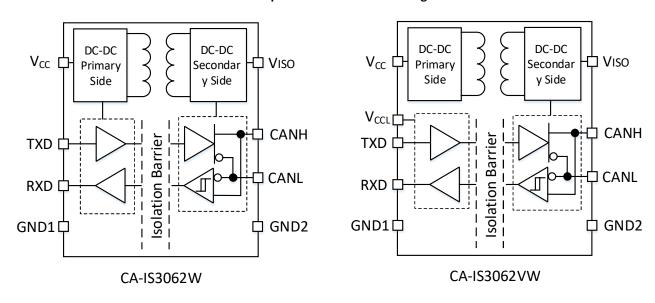
2 Applications

- Industrial Controls
- Building Automation
- Security and Protection System
- Transportation
- Medical
- Telecom

3 General Description

The CA-IS3062x are galvanically-isolated CAN transceivers with a built-in isolated DC-DC converter, that eliminates the need for a separate isolated power supply in space constrained isolation designs. The logic input and output buffers separated by a silicon oxide (SiO_2) insulation barrier provide up to $5kV_{RMS}$ (60s) of galvanic isolation. Isolation improves communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports.

The CA-IS3062W/CA-IS3062VW devices operate from a single 5V supply on the logic side. An integrated DC-DC converter generates the 5V operating voltage for the cableside. The individual logic supply input of the CA-IS3062VW allows fully compatible +2.7V to +5.5V logic for the logic input and output lines. These devices do not require any external components other than bypass capacitors to realize an isolated CAN port. The transceivers operate up to 1Mbps data rate and feature integrated protection for robust communication, including current limit, thermal shutdown, and the extended ±58V fault protection on the CAN bus for equipment where overvoltage protection is required. The dominant timeout detection prevents bus lockup caused by controller error or by a fault on the TXD input. These CAN receivers also incorporate an input common-mode range (CMR) of ±30V, exceeding the ISO 11898 specification of -2V to +7V.


The CA-IS3062W/CA-IS3062VW are available in wide-body 16 pin SOIC(W) package, operate over -40°C to +125°C temperature range.

Device information

Part Number	Package	Package size (nominal value)
CA-IS3062W CA-IS3062VW	SOIC16-WB(W)	10.30 mm × 7.50 mm

Simplified functional block diagram

4 Ordering Information

Table 4-1. Ordering Information

Part #	V _{cc} (V)	Data Rate (kbps)	Galvanic Isolation (±V)	Logic Supply Input (V _{CCL})	Package
CA-IS3062W	4.5~5.5	1000	5000	N/A	SOIC16-WB
CA-IS3062VW	4.5~5.5	1000	5000	Yes	SOIC16-WB

Contents

1	Feat	ures1	9	Det	tailed I	Description	16
2	Appl	lications1		9.1	Ov	erview	16
3		eral Description1		9.2	CA	N Bus Status	16
4		ering Information2		9.3	Re	ceiver	16
5		sion History3		9.4	Tra	nsmitter	16
6		Configuration and Functions4		9.5	Iso	lated Supply Output	17
				9.6	Pro	otection Functions	17
7	•	ifications5			9.6.1	Signal Isolation and Power Isolation	17
	7.1	Absolute Maximum Ratings ¹ 5			9.6.2	Undervoltage Lockout	17
	7.2	ESD Ratings5			9.6.3	Thermal Shutdown	18
	7.3	Recommended Operating Conditions5			9.6.4	Current-Limit	18
	7.4	Thermal Information5			9.6.5	Transmitter-Dominant Timeout	18
	7.5	Insulation Specifications6	10		Appl	ication Information	18
	7.6	Safety-Related Certifications7	11		Pack	age Information	21
	7.7	Electrical Characteristics8	12			ering Temperature (reflow) Profile	
	7.8	Switching Characteristics9	13			and Reel Information	
	7.9	Typical Characteristics10	14		•	ortant Statement	
8	Para	meter Measurement Information13	14		iiiiþt	n tant Statement	24

5 Revision History

Revision Number	Description	Page Changed
Version 1.00	NA	N/A
Varsian 1 01	Revised logic-side supply current I _{CC}	8
Version 1.01	Removed ordering information	20
	Updated Table 9-2 Transmitter Truth Table	16
Version 1 02	Updated description and style of the datasheet	all
Version 1.02	Updated recommendations of PCB layout and input/output cap selection	20
	Updated TXD Pin description	3
Version 1.03	Add PCB layout guideline and Figure 10-3.	20
Version 1 04	Added new parts of CA-IS3062VW,	2
Version 1.04	Updated PCB layout Guidelines.	20

6 **Pin Configuration and Functions**

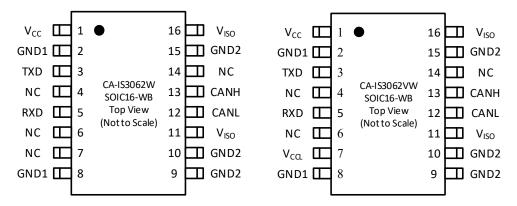


Figure 6-1. CA-IS3062W and CA-IS3062VW Pin Configuration

Table 6-1. CA-IS3062W/CA-IS3062VW Pin Configuration and Description

Pin name	Pin number		T	Description
Pili IIaille	CA-IS3062W	CA-IS3062VW	Туре	Description
V _{CC}	1	1	Power supply	Power supply input for the logic side. Bypass V_{CC} to GND1 with $0.1\mu F//10\mu F$ capacitor as close to the device as possible.
GND1	2, 8	2, 8	Ground	Logic side ground.
TXD	3	3	Digital I/O	Transmitter data input. CANH and CANL are in the dominant state when TXD is low. CANH and CANL are in the recessive stat when TXD is high.
NC	4, 6, 7, 14	4, 6, 14	-	No connection, do not connect these pins and leave them open
RXD	5	5	Digital I/O	Receiver output. RXD is high when the bus is in the recessive state. RXD is low when the bus is in the dominant state.
V _{CCL} ¹		7	Power supply	Logic-supply input. V_{CCL} is the logic supply voltage for logic-side input/output. Bypass to GND1 with a $0.1\mu F$ capacitor.
GND2	9, 10, 15	9, 10, 15	Ground	Bus side ground.
CANL	12	12	Differential I/O	Low-level CAN differential line.
CANH	13	13	Differential I/O	High-level CAN differential line.
V _{ISO}	11, 16	11, 16	Power supply	Isolated power supply output, provide power for the cable-side Bypass V_{ISO} to GND2 with $0.1\mu F//10\mu F$ capacitors as close to the device as possible.

7 Specifications

7.1 Absolute Maximum Ratings¹

	Parameters	Minimum value	Maximum value	Unit
V _{CC} or V _{ISO}	Power supply voltage ²	-0.5	6.0	V
TXD or RXD to GND1	Logic side voltage (RXD, TXD)	-0.5	$V_{CC}/V_{CCL} + 0.5^3$	V
CANH or CANL to GND2	Bus side voltage (CANH and CANL)	-40	40	V
Io	Receiver output current	-15	15	mA
T _J	Junction temperature		150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GND1 or GND2) and are peak voltage values.
- 3. Maximum voltage must not be exceed 6 V.

7.2 ESD Ratings

		Numerical value	Unit
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, CANH, CANL ¹	±6000	
V _{ESD} Electrostatic discharg	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, other pins ¹	±4000	V
	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	±2000	

Notes:

- 1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. Per JEDEC document JEP157, 250V CDM allows safe manufacturing of standard ESD control process.

7.3 Recommended Operating Conditions

	Para	imeters	MIN	TYP	MAX	Unit
V _{CC}	Logic side power voltage		4.5	5	5.5	V
V _{CCL}	Logic supply input		2.375		5.5	
V _I or V _{IC}	Voltage at bus pins (separately	or common mode)	-30		30	V
V _{IH}	Input high voltage	Driver (TXD)	2		$V_{CC}/V_{CCL} + 0.3$	V
V _{IL}	Input low voltage	Driver (TXD)	-0.3		0.8	V
I _{ОН}	High-level output current	Driver	-70			mA
		Receiver	-2			
	Low-level output current	Driver			70	mA
l _{OL}		Receiver			2.5	
T _A	Ambient temperature	·	-40	25	125	°C
Tj	Junction temperature		-40		150	°C
P_D	Total power dissipation	V_{CC} = 5.5V, T_A = 125°C, R_L = 60 Ω , TXD input is 500 kHz, 50% duty cycle square wave			900	mW
T _{J(shutdown)}	Thermal shutdown temperatu	re ¹		180		°C

7.4 Thermal Information

	Heat meter	SOIC16-WB	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	68.5	°C/W

7.5 Insulation Specifications

	Parameters	Test conditions	Value	Unit
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	8	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>400	V
	Material group	Per IEC 60664-1	I	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 400 V _{RMS}	I-IV	
		Rated mains voltage ≤ 600 V _{RMS}	1-111	
DIN V V	/DE V 0884-11:2017-01 ²			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1414	V _{PK}
.,	NAC to a constitue testation office.	AC voltage; time-dependent dielectric breakdown (TDDB) test	1000	V_{RMS}
V_{IOWM}	Maximum operating isolation voltage	DC voltage	1414	V _{DC}
V_{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} , t=60 s (certified); V _{TEST} = 1.2 × V _{IOTM} , t=1 s (100% product test)	7070	V _{PK}
V _{IOSM}	Maximum surge isolation voltage ³	Test method in accordance with IEC 60065, 1.2/50 μ s waveform, $V_{TEST} = 1.6 \times V_{IOSM}$ (production test)	6250	V _{PK}
	Apparent charge	Method a, after input/output safety test of the subgroup 2/3, $V_{ini} = V_{IOTM}, t_{ini} = 60 \text{ s};$ $V_{pd(m)} = 1.2 \times V_{IORM}, t_m = 10 \text{ s}$	≤5	
q_{pd}		Method a, after environmental test of the subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10 \text{ s}$	≤5	pC
		Method b, at routine test (100% production test) and preconditioning (type test) $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1 s;$ $V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 s$	≤5	
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft)$, f = 1 MHz	~0.5	pF
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	V _{IO} = 500 V, T _A = 25°C	>10 ¹²	+ -
R _{IO}	Isolation resistance	$V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	>10 ¹¹	Ω
		$V_{10} = 500 \text{ V at } T_S = 150 ^{\circ} \text{C}$	>10 ⁹	\dashv
	Contaminant level	-	2	
UL ²				
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification) $V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	5000	V _{RMS}

- 1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization.
- 3. The characterization charge is discharging charge (pd) caused by partial discharge.
- 4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

Version 1.04, 2022/08/15

7.6 Safety-Related Certifications

VDE (pending)	CSA (pending)	UL (pending)	CQC (pending)	TUV (pending)
Certified	Certified according to	Certified according to	Certified according to	Certified according to EN/IEC
according to DIN	IEC 60950-1, IEC 62368-	UL 1577 Component	GB 443.1-2011	61010-1:2010 (3rd Ed) and EN
VDE V 0884-	1 and IEC 60601-1	Recognition Program		60950-1:2006/A2:2013
11:2017-01				
Maximum transient	SOP16-W: 5000 V _{RMS}	SOP16-W: 5000 V _{RMS}	Reinforced insulation,	
isolation voltage:		(Altitude ≤ 5000 m)	600 V _{RMS} maximum	
7070V _{pk} (SOIC16-W),			working voltage	
			(Altitude ≤ 5000 m)	
		Certificate number:	Certificate number:	

Version 1.04, 2022/08/15

7.7 Electrical Characteristics

over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with V_{CC} = 5 V, V_{CCL} = V_{CC} .

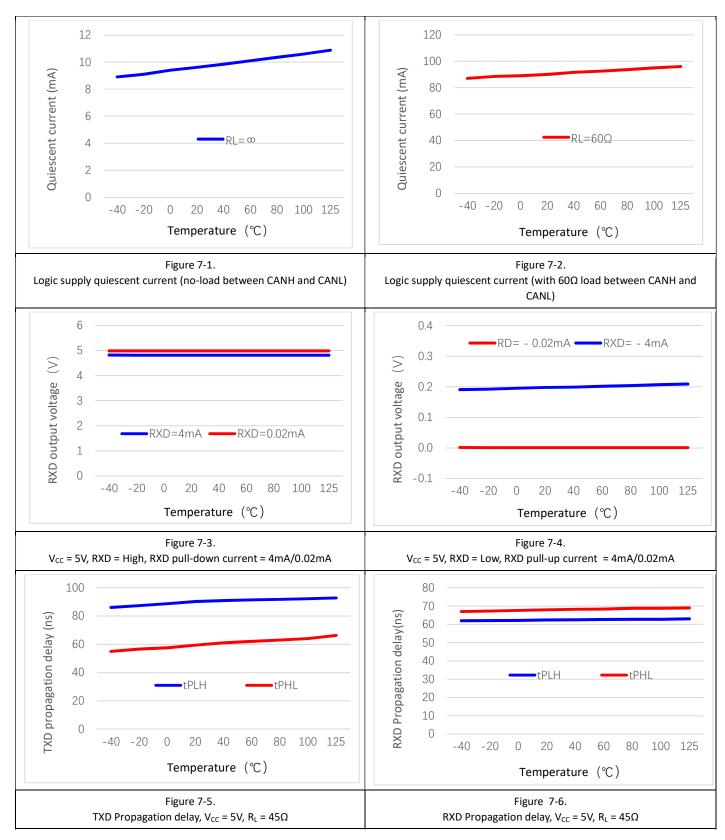
	Parameters		Test conditions	MIN.	TYP.	MAX.	Unit
Suppl	ly Current	dominant	V = 0V B = 600	65	95	125	
I_{CC}	Logic-side supply current	recessive	$V_1 = 0V$, $R_L = 60\Omega$ $V_1 = V_{CC}$	14	20	29	mA
solat	ed Power Supply (no-load on bu						
V _{ISO}	Isolated output voltage		I _{ISO} = 0 to 130mA	4.75	5	5.25	V
			R _L = NC ²		130		
I _{ISO}	Maximum load current ¹		$R_L = 60\Omega$		90		mA
			$R_L = 45\Omega$		80		
V _{ISO(LI}	NE) DC line regulation		I _{ISO} = 50mA, V _{CC} = 4.5V to 5.5V		2		mV/\
V _{ISO(LC}	DAD) DC load regulation		I _{ISO} = 0 to 130mA		1%		
EFF	Efficiency @ maximum loa	d current	I _{ISO} = 130mA, C _{LOAD} = 0.1μF 10μF		53%		
Drive	r						
V	Pur output voltage (dominant)	CANH	V = 0V B = 600, see Figure 9.1 Figure 9.2	2.9	3.4	4.5	V
V O(D)	Bus output voltage (dominant)	CANL	$V_1 = 0V$, $R_L = 60\Omega$; see Figure 8-1, Figure 8-2	0.5		2	V
V _{O(R)}	Bus output voltage (recess	ive)	$V_1 = 2V$, $R_L = 60\Omega$; see Figure 8-1, Figure 8-2	2	2.5	3	V
			$V_I = 0V$, $R_L = 60\Omega$;	1.5		3	V
v	V _{OD(D)} Differential output voltage (dominant)		see Figure 8-1, Figure 8-2, Figure 8-3	1.5		3	V
V OD(D)	Differential output voltage (doi)	illialitj	$V_1 = 0V, R_L = 45\Omega;$	1.3		3	V
			see Figure 8-1, Figure 8-2, Figure 8-3	1.5		3	V
			$V_1 = 3V$, $R_L = 60\Omega$; see Figure 8-1, Figure	-80		80	m۷
$V_{OD(R)}$	V _{OD(R)} Differential output voltage (recessive)		8-2			00	
			V _I = 3V, no-load	-0.05		0.05	V
V _{OC(D)} Common mode output voltage (dominant)		(dominant)		2	2.5	3	V
$V_{OC(pp)}$	Peak to peak common mode o	utput	see Figure 8-7		60		mV
voltag							
I _{IH}	High-level input current, TXD ir		V ₁ = 2V			20	μΑ
I _{IL}	Low-level input current, TXD in	put	V _I = 0.8V	-20			μΑ
			$V_{CANH} = -30 \text{ V, CANL open}$; see Figure 8-10	-105	-36		
los(ss)	Short-circuit steady-state output	t current	V _{CANH} = 30 V, CANL open ; see Figure 8-10		0.6	2	mA
05(55)	,		$V_{CANL} = -30 \text{ V, CANH open}$; see Figure 8-10	-2	-0.6		
			V _{CANL} = 30V, CANH open; see Figure 8-10		42	105	
Recei							
V _{IT+}	Positive-going bus input thresho				0.8	0.9	V
V _{IT-}	Negative-going bus input thresh	old voltage		0.5	0.65		V
V _{HYS}	Hysteresis voltage		5: 05	50	125		mV
V _{OH}	High-level output voltage		I _{OH} = –4mA; see Figure 8-6	V _{CC} /V _{CCL} – 0.8	4.8		V
	-		$I_{OH} = -20\mu\text{A}$; see Figure 8-6	V _{CC} /V _{CCL} - 0.1	5	0.4	
V _{OL}	High-level output voltage		I _{OL} = 4mA; see Figure 8-6		0.2	0.4	V
			$I_{OL} = 20\mu A$; see Figure 8-6		0	0.1	
Cı	CANH or CANL input capacitance	e to ground	TXD = 3V, V_1 = 0.4 x sin(2 π ft) + 2.5, f = 1MHz		24		pF
C	Differential input capacitance		TXD = 3V, V_1 = 0.4 x sin(2 π ft), f= 1MHz		12		,F
C _{ID}		100		15	12	40	pF
R _{IN}	CANH and CANL input capacitan	ice	TXD = 3V	15		40	kΩ
R _{ID}	Differential input resistance Input resistance matching		TXD = 3V	30	00/	80	kΩ
R _{I(m)}		/	$V_{CANH} = V_{CANL}$	-2%	0%	2%	
CNATI	(1 – [R _{IN(CANH)} / R _{IN(CANL)}]) x 100%		V. = 0V or V soo Figure 9 11	100	150		\tau/
CIVITI	Common mode transient immu	шц	V _I = 0V or V _{CC} ; see Figure 8-11	100	150		kV/μ

^{1.} The available output current from V_{ISO} will be reduced when $T_A > 85$ °C, see Figure 7-12.the maximum output current of V_{ISO} vs. temperature.

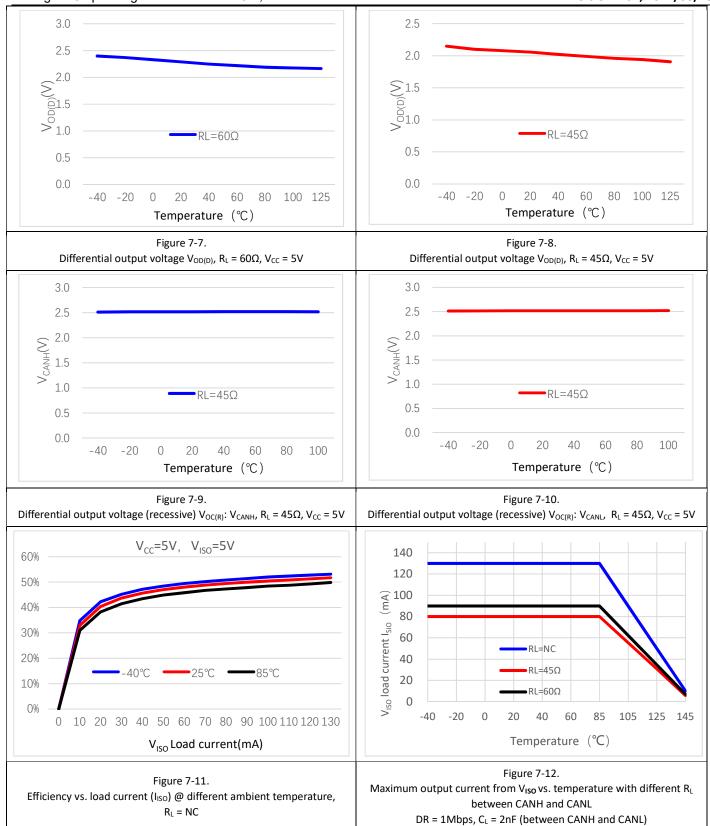
^{2.} R_L = NC means no-load connection between CANH and CANL.

7.8 Switching Characteristics

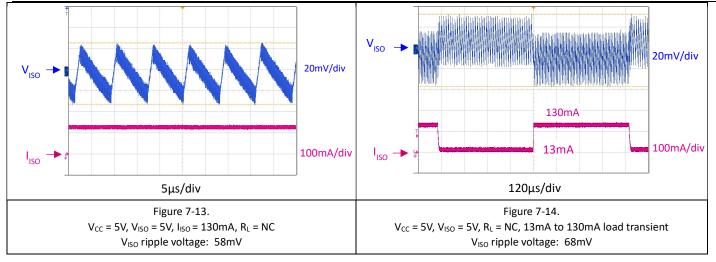
over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with V_{CC} = 5 V, V_{CCL} = V_{CC}.


	Parameters	Test conditions	MIN	TYP	MAX	Unit
Devic	e					
t _{loop1}	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant	Coo Figure 9 9	110	150	210	ns
t _{loop2}	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive	See Figure 8-8.	110	150	210	ns
Drive	1		•			•
t _{PLH}	TXD propagation delay (recessive to dominant)		35	75	130	
t _{PHL}	TXD propagation delay (dominant to recessive)	Saa Siawaa Q 4	35	55	100	1
t _r	Differential driver output rise time	See Figure 8-4.		55	100	ns
t _f	Differential driver output fall time			60	105	1
t _{TXD_D}	TXD dominant timeout	C _L = 100 pF; see Figure 8-9.	2	5	8	ms
Recei	ver	•				
t_{PLH}	RXD propagation delay (recessive to dominant)			85	140	
t _{PHL}	RXD Propagation delay (dominant to recessive)	5.4.5% 44.0.6		60	140	1
t _r	RXD Output signal rise time	See Figure 8-6.		2.5	6	ns
t _f	RXD Output signal fall time			2.5	6	1
		'				

^{1.} The TXD dominant time out (t_{TXD_DTO}) disables the driver of the transceiver once the TXD has been dominant longer than (t_{TXD_DTO}) which releases the bus lines to recessive preventing a local failure from locking the bus dominant.



7.9 Typical Characteristics


over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with $V_{CC} = 5 \text{ V}$, $V_{CCL} = V_{CC}$.

CA-IS3062W, CA-IS3062VW Version 1.04, 2022/08/15

8 Parameter Measurement Information



Figure 8-1. Driver Voltage and Current Definition

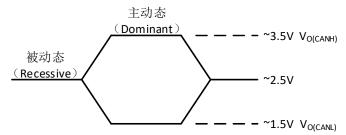


Figure 8-2. Bus Logic State Voltage Definition

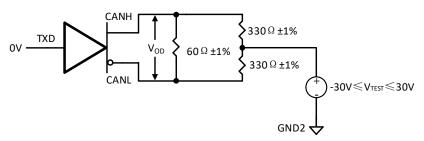
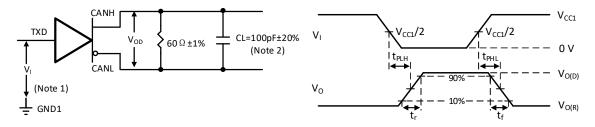



Figure 8-3. Driver V_{OD} with Common Mode Loading Test Circuit

- 1. The input pulse is supplied by a generator with characteristics: PRR ≤ 125 kHz, 50% duty cycle; rise time t₁≤6 ns, fall time t₁≤6 ns; Z₀ = 50 Ω.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure 8-4. Transmitter Test Circuit and Timing Diagram

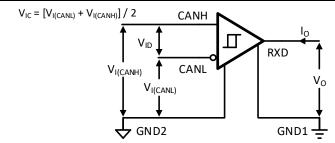
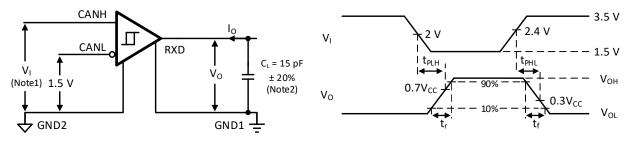



Figure 8-5. Receiver Voltage and Current Definition

- The input pulse is supplied by a generator with characteristics: PRR ≤ 125 kHz, 50% duty cycle; rise time t_i≤6 ns, fall time t_i≤6 ns; Z₀ = 50 Ω.
- $2. \qquad \text{Load capacitance } C_L \text{includes external circuit (instrumentation and fixture etc.) capacitance}.$

Figure 8-6. Receiver Test Circuit and Timing Diagram

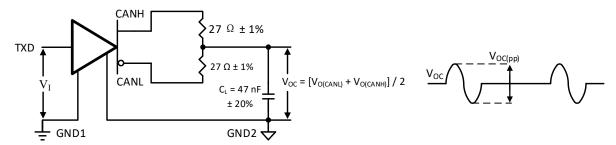


Figure 8-7. Peak-to-Peak Output Voltage Test Circuit and Waveform

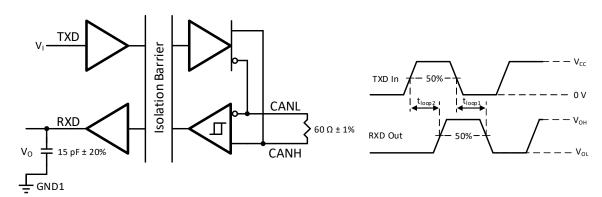
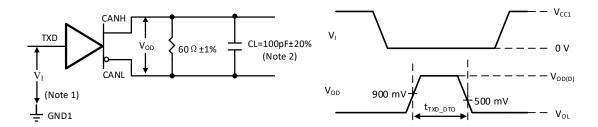



Figure 8-8. TXD to RXD Loop Delay

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_i \leq 6$ ns, fall time $t_i \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure 8-9. Transmitting Dominant Timeout Timing Diagram

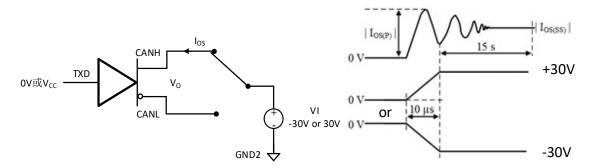


Figure 8-10. Driver Short Circuit Current Test Circuit and Measurement

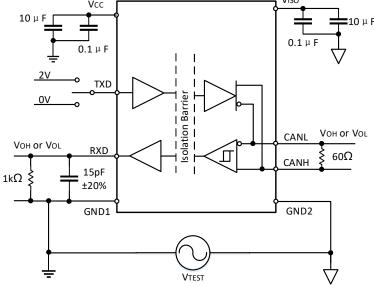


Figure 8-11. Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Overview

The CA-IS3062x isolated CAN transceivers provide up to $5000V_{RMS}$ (60s) of galvanic isolation between the CAN cable-side and the logic-side of the transceivers. These integrated transceivers are suitable for applications that have limited board space and require more integration. Only external bypass capacitors are needed to fully realize an isolated CAN port. The devices feature up to $150 \text{ kV/}\mu\text{s}$ common mode transient immunity, allow up to 100 kp communication across an isolation barrier. Robust isolation coupled with high standoff voltage and increased speeds enables efficient communication in noisy environments, making them ideal for communication with the microcontroller in a wide range of applications such as industrial control, building automation, telecom rectifiers, HVACs etc. industrial applications.

The supply voltage range for the logic side is 4.5V to 5.5V (V_{CC}), also the CA-IS3062VW provides individual logic supply input and allows fully compatible +2.7V to +5.5V logic for the digital lines. Power isolation is achieved with an integrated DC-DC convertor to generate a regulated 5V supply for the cable-side. The receiver input common-mode range is $\pm 30V$, exceeding the ISO 11898 specification of -2V to +7V, and the fault tolerant is up to $\pm 58V$. Dominant timeout prevents the bus from being blocked by a hung-up microcontroller, and the outputs CANH and CANL are short-circuit current-limited, protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

9.2 CAN Bus Status

The CAN bus has two states: dominant and recessive. In the dominant state (a zero bit, used to determine message priority), CANH-CANL are defined to be logic '0' when the voltage across them is between +1.5V and +3V (higher than 0.9V). In the recessive state (a 1-bit and the state of the idle bus), the driver is defined to be logic '1' when differential voltage is between -120mV and +12mV, or when it is near zero(lower than 0.5V), see Figure 8-2.

9.3 Receiver

The receiver reads the differential input from the bus line (CANH and CANL) and transfers this data as a single-ended output RXD to the CAN controller. The internal comparator senses the difference voltage $V_{DIFF} = (V_{CANH} - V_{CANL})$, with respect to an internal threshold of 0.7V. If $V_{DIFF} > 0.9V$, a logic-low is present on RXD; If $V_{DIFF} < 0.5V$, a logic-high is present. The CANH and CANL common-mode range is $\pm 30V$ in normal mode. RXD is a logic-high when CANH and CANL are shorted or terminated and un-driven. See Table 9-1 for more details.

 $\begin{array}{c|ccccc} \textbf{V}_{ID} = \textbf{V}_{CANH} & \textbf{BUS STATE} & \textbf{RXD} \\ \\ \textbf{V}_{ID} \geq 0.9 \textbf{V} & \textbf{Dominant} & \textbf{Low} \\ \\ 0.5 \textbf{V} < \textbf{V}_{ID} < 0.9 \textbf{V} & \textbf{Indeterminate} & \textbf{Indeterminate} \\ \\ \textbf{V}_{ID} \leq 0.5 \textbf{V} & \textbf{Recessive} & \textbf{High} \\ \\ \textbf{Open} \ (\textbf{V}_{ID} \approx 0 \textbf{V}) & \textbf{Open} & \textbf{High} \\ \\ \end{array}$

Table 9-1. Receiver Truth Table

9.4 Transmitter

The transmitter converts a single-ended input signal (TXD) from the local CAN controller to differential outputs for the bus lines CANH and CANL. The truth table for the transmitter is provided in Table 9-2. CANH and CANL outputs are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

Table 9-2. Transmitter Truth Table (When not connected to the bus)

V	INPUT	TXD LOW TIME	ОПТЕ	DUC CTATE	
V _{cc}	TXD	TAD LOW TIME	CANH	CANL	BUS STATE
	Low	< t _{TXD_DTO}	High	Low	Dominant
Power Up	Low	> t _{TXD_DTO}	V _{ISO} /2	V _{ISO} /2	Recessive
	High or Open	Х	V _{ISO} /2	V _{ISO} /2	Recessive
Power Down	Х	Х	Hi-Z	Hi-Z	Hi-Z

X = Don't care, Hi-Z = high-impedance.

9.5 **Isolated Supply Output**

The integrated DC-DC converter provides up to 650mW of isolated power with +5V fixed output voltage configuration. The maximum output current from V_{ISO} is shown as Table 9-3. Note that the I_{ISO} value in Table 9-3 is the maximum output current at +25°C. With the increase of temperature, especially when the temperature exceeds +85°C, the maximum load current will be decreased, see Figure 7-12. Maximum output current from V_{ISO} at different temperature and bus load.

Table 9-3. Maximum Output Current of V_{ISO} @ T_A = 25°C

Supply voltage V _{CC} (V)	V _{ISO} (V)	R_L (Ω) between CANH and CANL	I _{ISO} (mA)						
4.5~5.5	5	NC¹	130						
4.5~5.5	5	60	90						
4.5~5.5 5		45	80						
Note:									
1. NC means no-load connection between CANH and CANL.									

9.6 **Protection Functions**

9.6.1 Signal Isolation and Power Isolation

The CA-IS3062x devices integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allow data transmission between the controller side and cable side of the transceiver with different power domains. Also, the power isolation is achieved with an integrated DC-DC convertor to generate a regulated 5V supply for the cable-side.

9.6.2 Undervoltage Lockout

Both CA-IS3062W and CA-IS3062VW devices have undervoltage detection on V_{CC} supply terminal, the CA-IS3062VW also features undervoltage detection on V_{CCL} supply terminal, that place the device in protected mode during an undervoltage event on V_{CCL} or/and V_{CC} , see Table 9-3 and Table 9-4. Once the undervoltage condition is cleared and the supply voltage has returned to a valid level, the devices transition to normal mode. The host controller should not attempt to send or receive messages until the transceivers enter normal mode.

Table 9-4. CA-IS3062W Undervoltage Lockout

V _{cc}	DEVICE STATE	BUS OUTPUT	RXD
> V _{CC(UVLO+)}	Normal	Per TXD	Mirrors Bus
< V _{CC(UVLO_)}	Protected mode	High Impedance	High Impedance

idale 3 3. e. 133002 viv olider voitage contout										
V _{CC} V _{CCL}		DEVICE STATE	RXD							
> V _{CC(UVLO+)} > V _{CCL(UVLO+)}		Normal	Per TXD	Mirrors Bus						
< V _{CC(UVLO_)} > V _{CCL(UVLO+)}		Protected mode	High Impedance	High Impedance						
> V _{CC(UVLO+)}	< V _{CCL(UVLO_)}	Protected mode	High Impedance	High Impedance						
< V _{CC(UVLO_)}	< V _{CCL(UVLO_)}	Protected mode	High Impedance	High Impedance						

Table 9-5. CA-IS3062VW Undervoltage Lockout

9.6.3 Thermal Shutdown

If the junction temperature of the CA-IS3062W/CA-IS3062VW devices exceed the thermal shutdown threshold $T_{J(shutdown)}$ (180°C, typ.), the devices turn off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops to normal operation temperature of the device(160°C, typ.).

9.6.4 Current-Limit

The CA-IS3062x protect the transmitter output stage against a short-circuit to a positive or negative voltage by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed.

9.6.5 Transmitter-Dominant Timeout

The CA-IS3062x devices feature a transmitter-dominant timeout (t_{TXD_DTO}) that prevents erroneous CAN controllers from clamping the bus to a dominant level by maintaining a continuous low TXD signal. When TXD remains in the dominant state (low) for greater than t_{TXD_DTO} , the transmitter is disabled, releasing the bus to a recessive state. After a dominant timeout fault, the transmitter is re-enabled when receiving a rising edge at TXD. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. So the minimum transmitted data rate can be calculated as: 11 bits/ t_{TXD_DTO} = 11 bits / 2ms = 5.5kbps. The transmitter-dominant timeout limits the minimum possible data rate of the CA-IS3062W/CA-IS3062VW to 5.5kbps.

10 Application Information

CAN interface has been a very popular serial communication standard in the industry and automotive applications due to its excellent prioritization and arbitration capabilities. In systems with different voltage domains, isolation is typically used to protect the low voltage side from the high voltage side in case of any faults. The CA-IS3062x provide complete isolated solution for these kind of applications, see Figure 10-1 the typical application circuit.

The CA-IS3062x devices can operate up to 1Mbps data rate. However, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. factors. For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. The ISO11898 Standard specifies a maximum of 30 nodes. However, with careful design, and consider of high input impedance of the CA-IS3062x, designers can have many more nodes (up to 110) on the CAN bus.

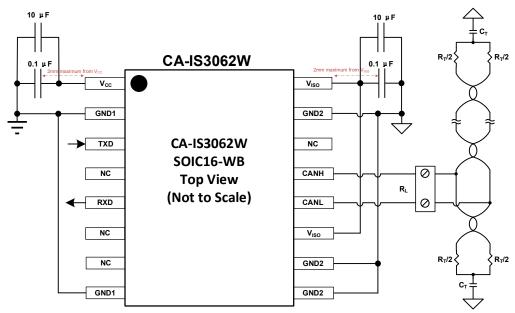


Figure 10-1. Typical Application Circuit

In multi-drop CAN applications, it is important to maintain a single linear bus of uniform impedance that is properly terminated at each end. A star, ring, or tree configuration should never be used. Any deviation from the end-to-end wiring scheme creates a stub. High-speed data edges on a stub can create reflections back down to the bus. These reflections can cause data errors by eroding the noise margin of the system. Although stubs are unavoidable in a multi-drop system, care should be taken to keep these stubs as short as possible, especially when operating with high data rates. See Figure 10-2, the typical CAN bus operating circuit, termination may be a single 120Ω resistor (R_T) at the end of the bus, either on the cable or in a terminating node; or split termination, the two 60Ω termination resistors in parallel may be used if filtering and stabilization of the common mode voltage of the bus is desired.

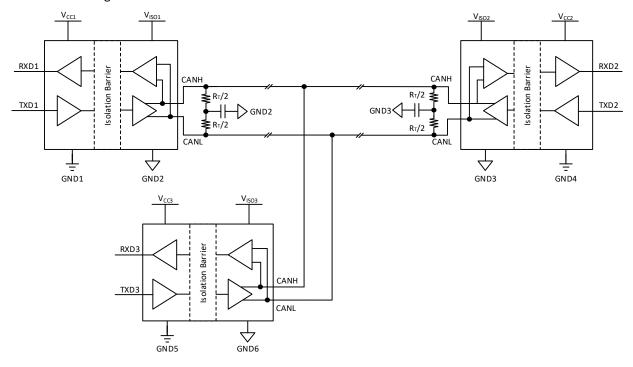


Figure 10-2. Typical CAN Bus Operating Circuit

To ensure reliable operation at all data rates, it is strongly recommended to bypass V_{CC} and V_{ISO} with $0.1\mu F \mid 10\mu F$ low-ESR ceramic capacitors to GND1 and GND2 respectively. Place the bypass capacitors as close to the power supply input/output pins as possible. The PCB designer should follow some critical recommendations in order to get the best performance from the design. For the high-speed operating digital circuit boards, we recommend to use the standard FR-4 PCB material and a minimum of four layers is required to accomplish a low EMI PCB design. Also, keep the input/output traces as short as possible, avoid using vias to make low-inductance paths for the signals. For harsh industrial environments, external protection might be necessary to protect the CAN transceiver during normal operation. If the $10\mu F$ ceramic capacitor can't be placed for some reason, a $4.7\mu F$ ceramic capacitor is the minimal value needed. Place the $0.1\mu F$ ceramic close to V_{CC} and V_{ISO} pins and keep distance within 2mm. The input/output ceramic capacitor and the IC must be placed on the same PCB layer and connected without any vias to reduce parasite. The recommended PCB layout of CA-IS3062 is shown in Figure 10-3. For the logic supply input, we recommend to use a $1\mu F$ ceramic capacitors with X5R or X7R between V_{CCL} pin and GND1.

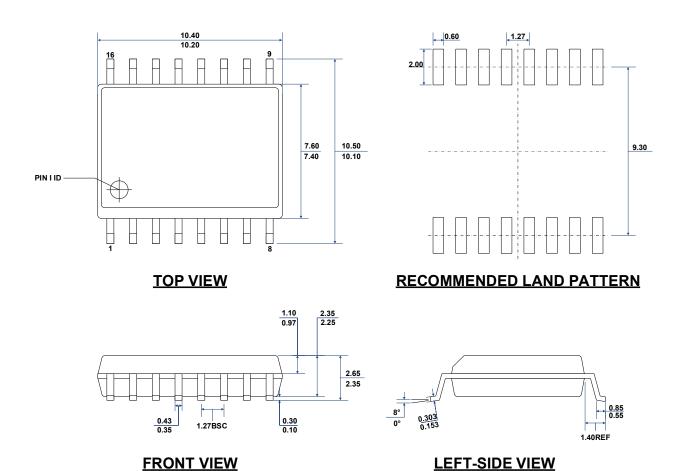


Figure 10-3. Recommended PCB Layout

11 Package Information

Wide-body SOIC16 Package Outline

Note:

1. All dimensions are in millimeters, angles are in degrees.

12 Soldering Temperature (reflow) Profile

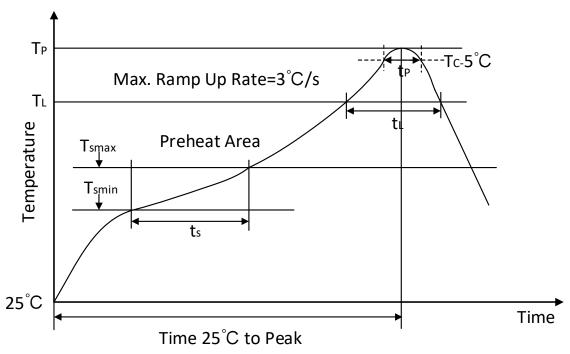
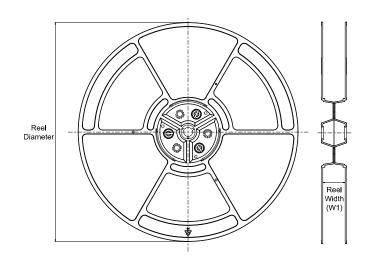
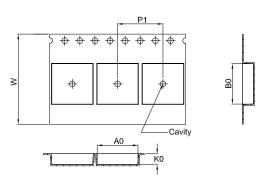


Figure 12-1. Soldering Temperature (reflow) Profile

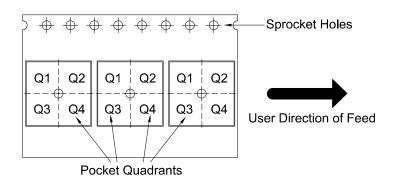

Table 12-1. Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly				
Average ramp-up rate(217 °C to Peak)	3℃ /second max				
Time of Preheat temp(from 150 $^{\circ}\!$	60-120 second				
Time to be maintained above 217 $^{\circ}\mathrm{C}$	60-150 second				
Peak temperature	260 +5/-0 ℃				
Time within 5° of actual peak temp	30 second				
Ramp-down rate	6 ℃ /second max.				
Time from 25° C to peak temp	8 minutes max				



13 Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3062W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3062VW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

14 Important Statement

The above information is for reference only and intended to help Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com