
CH395 Datasheet http://wch.cn

1

Ethernet Protocol Stack Chip CH395
Datasheet

Version: 1E
http://wch.cn

1. Overview
CH395 is an Ethernet protocol stack management chip, which is used for Ethernet communication in MCU
system.

CH395 chip has 10/100M Ethernet Media Access Control (MAC) and Physical Layer (PHY), is fully
compatible with IEEE802.3 10/100M protocol, and has built-in Ethernet stack firmware such as IP, DHCP,
ARP, ICMP, IGMP, UDP and TCP. MCU system can perform network communication conveniently through
CH395 chip.

CH395 supports three communication interfaces: 8-bit parallel port, SPI interface or asynchronous serial port.
Controllers such as DSP/MCU/MPU can control CH395 chip for Ethernet communication through any of the
above communication interfaces.

The figure below is an application block diagram of CH395.

2. Features
● Internal Ethernet MAC layer and PHY layer.
● Support 10/100M, full/half duplex self-adaption, and be compatible with 802.3 protocol.
● Support multiple modes of address filtering.
● Fully compatible with 802.3X full-duplex flow control and half-duplex back pressure flow control.
● Support automatic MDI/MDIX line conversion.
● Built-in TCP/IP protocol stack, and support IPv4, DHCP, ARP, ICMP, IGMP, UDP and TCP

Exchanger
PC

Router
and other
network
devices

Local
Controller

DSP
MCU
MPU
etc.

IP
D0-D7

PCS#

Parallel bus

8 bits
Passive
Paralle
l port

DHCP A0
RD#

ARP
WR
UDP

ICMP SPI
device
Interfac

e

SCS
SCK

MOSI=> SDI
MISO <= SDO

SPI bus

IGMP

TCP

UART

TXD => RXD
RXD <= TXD

Serial UART
10/100M MAC/PHY

INT#

TXP

TXN

RXP

RXN

Ethernet signal

http://wch.cn
http://wch.cn

CH395 Datasheet http://wch.cn

2

protocols.
● Provide 8 independent Socket pairs, simultaneously transmit and receive data.
● Provide a high-speed 8-bit passive parallel interface and support the parallel data bus connected to

MCU.
● Provide SPI device interface with the maximum speed of 30MHz, and support SPI serial bus

connected to MCU.
● Provide UART with the maximum speed of 3Mbps, support the serial port connected to MCU, and

support the dynamic adjustment of communication baud rate.
● Support low power mode.
● Built-in 24K RAM can be used for Ethernet data transmission and receiving, and each Socket

transceiver buffer can be freely configured.
● Built-in 4KB EEPROM.
● Support 8-channel GPIO.
● Provide LQFP64M and LQFP128 lead-free package, and be compatible with RoHS.

3. Package

http://wch.cn

CH395 Datasheet http://wch.cn

3

Chip model
Chip package

Name Description

CH395L LQFP128 LQFP package; 128 pins; package body 14x14mm

CH395Q LQFP64M LQFP package; 64 pins; package body 10 x10mm

4. Pins
CH395L
Pin No.

CH395Q
Pin No.

Pin
Name

Pin Type Description

7, 21, 26, 39,
56, 70, 72, 83,
92, 101, 122

2, 12, 17,
21, 29, 40,
42, 45, 63

VCC33 Power
3.3V positive power input terminal, 0.1uF power

decoupling capacitor connected externally

1, 5, 12, 13,
18, 28, 30, 54,
82, 108

6, 19, 28,
43, 54, 64 VCC18 Power

1.8V positive power input terminal, 0.1uF power
decoupling capacitor connected externally

2, 4, 9, 16, 17,
22, 27, 29, 55,
64, 65, 71,
109

3, 9, 13,
18, 20, 37,
41, 44, 48

GND Power Common ground

http://wch.cn

CH395 Datasheet http://wch.cn

4

3, 8, 23, 24,
25, 31, 32, 33,
34, 35, 36, 37,
38, 40, 41, 42,
43, 44, 45, 46,
47, 57, 58, 66,
67, 68, 69, 73,
74, 75, 76, 77,
78, 79, 80, 81,
84, 85, 86, 87,
88, 89, 90, 91,
93, 94, 95, 96,
97, 102, 103,
105, 110, 111,
127, 128

14, 15, 16,
30, 31, 38,
39, 46, 47,
50, 51, 53,
55, 56

NC - Reserved pins, suspended

6 1 RSETE Input Externally connect 12K-18K resistor to ground

10 4 RXP
Ethernet
signal Ethernet RXP signal

11 5 RXN Ethernet
signal

Ethernet RXN signal

14 7 TXP
Ethernet
signal

Ethernet TXP signal

15 8 TXN
Ethernet
signal Ethernet TXN signal

19 10 XI Input
Input terminal of the crystal oscillator, an external

30MHz crystal is required

20 11 XO Output Inverted output terminal of crystal oscillator, an
external 30MHz crystal is required

48 22 GPIO0
Bidirectional
Three-state GPIO0, default input

49 23 GPIO1 Bidirectional
Three-state

GPIO1, default input

50 24 GPIO2
Bidirectional
Three-state GPIO2, default input

51 25 GPIO3/RDY# Bidirectional
Three-state

GPIO3, default output, output low level after
CH395 reset

52 26 RST Output Power-on rest output and external reset output,
active high

53 27 SEL Input
Interface configuration input during chip internal

reset, built-in pull-up resistor

59 32 GPIO4 Bidirectional
Three-state

GPIO4, default input

60 33 GPIO5
Bidirectional
Three-state GPIO5, default input

61 34 GPIO6 Bidirectional
Three-state

GPIO6, default input

62 35 GPIO7
Bidirectional
Three-state GPIO7, default input

http://wch.cn

CH395 Datasheet http://wch.cn

5

63 36 RSTI Input
External reset input, active low, built-in pull-up

resistor

98 49 INT# Output
Interrupt request output, active low, built-in pull-up

resistor

99 - A0 Input

Parallel port address input, command port and data
port distinguished, built-in pull-up resistor;

when A0 is 1, write commands;
when A0 is 0, read and write data

100 - PCS# Input
Chip selection control input of parallel port, active

low, built-in pull-up resistor

106 - RD# Input
Read strobe input of parallel port, active low,

built-in pull-up resistor

107 - WR# Input Write strobe input of parallel port, active low,
built-in pull-up resistor

112 57 RXD Input Serial data input of asynchronous serial interface,
built-in pull-up resistor

113 58 TXD
Input

Output

Interface configuration input during chip internal
reset, built-in pull-up resistor, and serial data output

of asynchronous serial port after chip reset

114 59 SCS Input
Chip selection input of SPI interface, active low,

built-in pull-up resistor

115 60 SCK Input Serial clock input of SPI interface, built-in pull-up
resistor

116 61 SDI Input Serial data input of SPI interface, built-in pull-up
resistor

117 62 SDO
Three-status

output Serial data output of SPI interface

118～121
123～126

- D0～D7
Bidirectional
Three-state

8-bit bidirectional data bus on parallel port,
built-in pull-up resistor

104 52 ELINK Output Ethernet connection communication indicator lamp
drive pin

(Note: The pins marked in gray in this table can withstand 3.3V input voltage, and the unmarked pins can
only withstand 3.3V and 5V input.)

5. Commands
For the data in this datasheet, the suffix B is a binary number, and the suffix H is a hexadecimal number.
Otherwise, it is a decimal number.

Double-word data (32 bits in total) with low bytes in the front (Little-Endian) refers to: the lowest byte (bits
7 to 0), followed by the lower byte (bits 15 to 8), followed by the higher byte (bits 23 to 16), followed by the
highest byte (bits 31 to 24).

Data stream is a data block consisting of several consecutive bytes with a total length of at least 0 and at
most 4096.

The number in the brackets for the input data and output data in the following table is the number of bytes of
the parameter. If there are no brackets, it will be 1 byte by default.

http://wch.cn

CH395 Datasheet http://wch.cn

6

MCU referred to in this datasheet is basically applicable to DSP or MCU/MPU/SCM, etc.

Socket Pair includes a quaternion of source IP, source port, destination IP and destination port, uniquely
identifying both connection sides of Internet. It is Socket for short in this datasheet. CH395 provides 8
sockets at the same time, and their index values are 0, 1, 2, 3, 4, 5, 6 and 7 respectively.

The high and low bytes of IP and MAC addresses agreed in this datasheet may be different from some
documents, for convenience only:

For example, the IP address is 192.168.1.2, where 192 is the lowest byte and 2 is the highest byte. Low
bytes (IP) in this datasheet are in front.
For example, MAC address is 00.01.02.03.04.05, where 00 is the lowest byte and 05 is the highest byte.
Low bytes (MAC) in this datasheet are in front.

For all commands including IP address input or output in this datasheet, IP low bytes are in front.
For all commands including MAC address input or output in this datasheet, MAC low bytes are in front.

Code Command name CMD_ Input Data Output data Command purpose

01H GET_IC_VER Version Get the chip and firmware
versions

02H SET_BAUDRATE
Baud rate

coefficient (3)
(Wait for 1mS)
Operation status

Set communication baud rate

03H ENTER_SLEEP Enter the low-power sleep
suspended state

05H RESET_ALL (Wait for 50mS) Execute hardware reset

19H GET_GLOB_INT_STATUS_ALL Global interrupt
status (2)

Get the global interrupt status

06H CHECK_EXIST Any data Bitwise NOT
Test the communication

interface and operation status

20H SET_PHY
PHY connection

mode Set PHY connection mode

21H SET_MAC_ADDR
MAC address

(6) Set MAC address

22H SET_IP_ADDR IP address (4) Set IP address

23H SET_GWIP_ADDR Gateway
address (4)

 Set gateway IP address

24H SET_MASK_ADDR Subnet mask (4) Set subnet mask

25H SET_MAC_FILT

Filter mode

 Set MAC filter mode HASH0(4)

HASH1(4)

26H GET_PHY_STATUS PHY status Get PHY status
27H INIT_CH395 CH395 chip initialization

28H GET_UNREACH_IPPORT Inaccessible
information (8)

Get inaccessible IP, ports, and
protocols

29H GET_GLOB_INT_STATUS
Global interrupt

status Get the global interrupt status

2AH SET_RETRAN_COUNT
Number of

retries
Set the number of retries, 20 to

the maximum

http://wch.cn

CH395 Datasheet http://wch.cn

7

2BH SET_RETRAN_PERIOD Retry cycle (2)
Set the retry cycle, 1000MS to

the maximum

2CH GET_CMD_STATUS Command
execution status

Get command execution status

2DH GET_REMOT_IPP_SN Socket index IP and port (6) Get remote (destination) IP and
port

2EH CLEAR_RECV_BUF_SN Socket index
Clear the receive buffer of

Socket
2FH GET_SOCKET_STATUS_SN Socket index Socket status Get Socket status

30H GET_INT_STATUS_SN Socket index Socket interrupt Get Socket interrupt status

31H SET_IP_ADDR_SN
Socket index

Destination IP
(4)

 Set destination IP address of
Socket

32H SET_DES_PORT_SN
Socket index

 Set destination port of Socket Destination port
(2)

33H SET_SOUR_PORT_SN
Socket index

 Set source port of Socket
Source port (2)

34H SET_PROTO_TYPE_SN
Socket index

 Set working mode of Socket
Protocol type

35H OPEN_SOCKET_SN Socket index Turn on Socket

36H TCP_LISTEN_SN Socket index Start Socket monitoring

37H TCP_CONNECT_SN Socket index Start Socket connection

38H TCP_DISNCONNECT_SN Socket index Disconnct Socket TCP

39H

WRITE_SEND_BUF_SN

Socket index

Transmit buffer write data to

Socket Length (2)

Data stream (N)

3BH GET_RECV_LEN_SN Socket index Length (2)
Gets the length of Socket

received data

3CH READ_RECV_BUF_SN
Socket index

Data stream (N)
Receive data from Socket

receive buffer Length (2)

3DH CLOSE_SOCKET_SN Socket index Close socket.

3EH SET_IPRAW_PRO_SN
Socket index

 Set the protocol field of Socket
IP packet IP protocol field

3FH PING_ENABLE Enable flag PING enable

40H GET_MAC_ADDR MAC address
(6)

Get MAC address

41H DHCP_ENABLE Enable flag Start (stop) DHCP

42H GET_DHCP_STATUS DHCP status Get DHCP status

43H GET_IP_INF IP and other
information

Get IP, MASK, DNS and other
information

http://wch.cn

CH395 Datasheet http://wch.cn

8

50H SET_TCP_MSS TCP MSS（2） Set TCP MSS

51H SET_TTL TTL Set TTL value, 128 to the
maximum

52H SET_RECV_BUF

Socket index

 Set Socket receive buffer
Starting block

address
Number of

blocks

53H SET_SEND_BUF

Socket index

 Set Socket transmit buffer
Starting block

address
Number of

blocks

55H SET_FUN_PARA Functional
parameters (4)

 Set functional parameters

56H SET_KEEP_LIVE_IDLE 4-byte time
parameter

 Set KEEPLIVE free time

57H SET_KEEP_LIVE_INTVL
4-byte time
parameter

 Set KEEPLIVE timeout

58H SET_KEEP_LIVE_CNT
Number of

retries
Set the number of KEEPLIVE

timeout retries

59H SET_KEEP_LIVE_SN
Socket index

 Set Socket KEEPLIVE
Allocation

E9H EEPROM_ERASE Erase EEPROM

EAH EEPROM_WRITE

EEPROM
address (2)

 Write EEPROM
Length

Data stream (N)

EBH EEPROM_READ
EEPROM
address (2) Data stream (N) Read EEPROM

Length

ECH READ_GPIO_REG GPIP0 register
address

GPI0 register
value

Read GPIO Register

EDH WRITE_GPIO_REG

GPIP0 register
address

 Write GPIO Register
GPIP0 register

value

For the command marked in gray of the table, it is necessary to execute a certain time and query the
execution status of the command. MCU can get the status through GET_CMD_STATUS. (Refer to
CH395INC.H for status definition)

5.1. CMD_GET_IC_VER
This command is used to get the chip and firmware versions. 1 byte of data returned is the version number,
the bit 7 is 0, the bit 6 is 1, and the bits 5-0 are the version number. If the returned value is 41H, remove bits
7 and 6, and the version number will be 01H. It is called chip version in this text.

http://wch.cn

CH395 Datasheet http://wch.cn

9

5.2. CMD_SET_BAUDRATE
This command is used to set the baud rate of CH395 for serial communication. When CH395 works in serial
communication mode, the default communication baud rate is set by the level combination of SDO, SDI and
SCK pins (refer to Section 6.4 of this datasheet) after reset. When these pins are suspended, the baud rate is
9600bps by default. If MCU supports high communication speed, the serial communication baud rate can be
dynamically regulated through this command. This command requires the input of three data, namely, baud
rate coefficient 0, baud rate coefficient 1 and baud rate coefficient 2. The following table shows the
corresponding relationship with baud rates.

Baud rate
coefficient 2

Baud rate
coefficient 1

Baud rate
coefficient 0

Communication baud rate (bps) Error

00H 12H C0H 4800 0%
00H 25H 80H 9600 0%
00H 4BH 00H 19200 0%
00H 96H 00H 38400 0%
00H E1H 00H 57600 0%
01H 2CH 00H 76800 0.6%
01H C2H 00H 115200 0.9%
07H 08H 00H 460800 0%
0EH 10H 00H 921600 7.1%
01H 86H A0H 100000 0%
0FH 42H 40H 1000000 7.6%
2DH C6H C0H 3000000 0%

Calculation formula:
BaudRate = (Baud rate coefficient 2 <<16) + (Baud rate coefficient 1 << 8) + Baud rate coefficient 0

Usually, the communication baud rate is set within 1mS. After completion, CH395 outputs the operation
state at the newly set communication baud rate. Therefore, MCU shall adjust its own communication baud
rate in time after sending the command.

5.3. CMD_ENTER_SLEEP
This command enables CH395 chip in a low-power sleep suspended state. When MCU writes a new
command to CH395 (no data input command, such as CMD_GET_IC_VER), it will exit the low-power state.
For the parallel port and SPI interface communication modes, active SCS chip selection will also cause
CH395 to exit the low-power state, so MCU shall immediately disable the SCS chip selection after sending
the command CMD_ENTER_SLEEP.

In sleep state, MAC and PHY of CH395 will be in power off mode and disconnect Ethernet.

Typically, it takes several milliseconds for CH395 to exit the low-power state.

5.4. CMD_RESET_ALL
This command enables CH395 to perform a hardware reset. Typically, hardware reset is completed within
50mS.

5.5. CMD_CHECK_EXIST
This command is used to test the communication interface and working state to check whether CH395 is
working properly. This command needs to input 1 byte of data, which can be any data. If CH395 is working
properly, the output data of CH395 will be the bitwise reverse of the input data. For example, if the input
data is 57H, the output data will be A8H.

http://wch.cn

CH395 Datasheet http://wch.cn

10

5.6. CMD_SET_PHY
This command is used to set Ethernet PHY connection mode of CH395. The connection mode is automated
negotiation mode by default. This command needs to input 1 byte of data, which is the connection mode
code:

Disconnect PHY when the connection mode code is 01H;
PHY is 10M full duplex when the connection mode code is 02H;
PHY is 10M half duplex when the connection mode code is 04H;
PHY is 100M full duplex when the connection mode code is 08H;
PHY is 100M half duplex when the connection mode code is 10H;
PHY is automated negotiation when the connection mode code is 20H.

When CH395 receives this command, it will reset MAC and PHY and reconnect according to the newly set
connection mode. If Ethernet is already connected, it will be disconnected and reconnected.

5.7. CMD_SET_MAC_ADDR
This command is used to set MAC address for CH395. It is necessary to input 6 bytes of MAC, with low
bytes of MAC address in front. CH395 chip will store MAC address in the internal EEPROM. It will take
100mS to execute this command.

MAC address assigned by IEEE has been burned when CH395 chip is delivered. If it is not necessary, please
do not set MAC address.

5.8. CMD_SET_IP_ADDR
This command is used to set IP address for CH395. It is necessary to input 4 bytes of IP address, with low
bytes of IP in front. For all commands including IP input or output in this datasheet, IP low bytes are in front.
This will not be explained below.

5.9. CMD_SET_GWIP_ADDR
This command is used to set the gateway address for CH395. It is necessary to input 4 bytes of IP address.

5.10. CMD_SET_MASK_ADDR
This command is used to set the subnet mask for CH395. It is necessary to input 4 bytes of mask for this
command. It is 255.255.255.0 by default and may not be set.

5.11. CMD_SET_MAC_FILT
This command is used to set MAC filter mode. There are a variety of MAC filter modes set. This command
requires the input of 9 bytes of data. The first byte is the filter mode, and the meanings of the data are as
follows:

Bit Name Description

[5:7] - Reserved
4 SEND_ENABLE Send enable
3 RECV_ENABLE Receive enable
2 RECV_MULTIPKT Receive multicast packets
1 RECV_ALL Receive all data
0 RECV_BROADPKT Receive broadcast packets

1 means ON, and 0 means OFF. RECV_BROADPKT, RECV_ENABLE and SEND_ENABLE are enabled
by default after CH395 is reset.

http://wch.cn

CH395 Datasheet http://wch.cn

11

The following table shows the meanings of bits:
RECV_ENABLE RECV_ALL RECV_BROADPKT RECV_MULTIPKT Description

1 0 0 0
Receive data packets
matched with MAC

address

1 1 X X Receive all data packets

1 0 1 0

Receive data packets
matched with MAC

address
Receive broadcast data

packets

1 0 0 1

Receive data packets
matched with MAC

address
Receive multicast data

packets

1 0 1 1

Receive data packets
matched with MAC

address
Receive broadcast data

packets
Receive multicast data

packets
0 X X X Disable receiving

Bytes 2-5 are HASH0 (HASH table 0), bytes 6-9 are HASH1 (HASH table 1), and HASH0 and HASH1 are
only valid when multicast is enabled.

HASH0 and HASH1 together form a 64-bit HASH table, bits 0-31 are HASH0 and bits 32-63 are HASH1.

HASH table calculation method: Use standard Ethernet redundancy check (CRC32) to calculate a 32-bit
CRC value for the multicast address, use the high 6 bits of the CRC value as the index value, and write the
corresponding bit of the HASH table as 1. For example, the bit 0 of HASH1 shall be written as 1 when the
calculated high 6 bits of the CRC for the multicast address are 32.

5.12. CMD_GET_PHY_STATUS
This command is used to get PHY connection status. After receiving this command, CH395 will query the
current PHY connection status and output 1-byte PHY connection status code:

PHY is disconnected when the connection status code is 01H;
PHY connection is 10M full duplex when the connection status code is 02H;
PHY connection is 10M half duplex when the connection status code is 04H.
PHY connection is 100M full duplex when the connection status code is 08H;
PHY connection is 100M half duplex when the connection status code is 10H.

5.13. CMD_INIT_CH395
This command is used to initialize CH395, including initializing MAC, PHY and TCP/IP stack of CH395.
Generally, it takes 350mS to execute the command. MCU can send GET_CMD_STATUS to query whether
the execution has finished and the execution status.

5.14. CMD_GET_UNREACH_IPPORT

http://wch.cn

CH395 Datasheet http://wch.cn

12

This command is used to get an inaccessible IP, ports and protocol type. CH395 will generate an inaccessible
interrupt when an inaccessible message is received. MCU can use this command to get inaccessible
information. After receiving this command, CH395 will output 1 byte of inaccessible code, 1 byte of
protocol type, 2 bytes of port number (low bytes in front), and 4 bytes of IP in turn. MCU can judge whether
the protocol, port or IP is inaccessible according to the inaccessible codes. For inaccessible codes, refer to
RFC792 (CH395INC.H defines four common inaccessible codes).

5.15. CMD_GET_GLOB_INT_STATUS
This command is used to get the global interrupt status. CH395 will output 1 byte of global interrupt status
after receiving this command. Global interrupt status is defined as follows:

Bit Name Description

7 GINT_STAT_SOCK3 Socket3 interrupt
6 GINT_STAT_SOCK2 Socket2 interrupt
5 GINT_STAT_SOCK1 Socket1 interrupt
4 GINT_STAT_SOCK0 Socket0 interrupt
3 GINT_STAT_DHCP DHCP interrupt
2 GINT_STAT_PHY_CHANGE PHY status change interrupt
1 GINT_STAT_IP_CONFLI IP conflict
0 GINT_STAT_UNREACH Inaccessible interrupt

① GINT_STAT_UNREACH: Inaccessible interrupt. When CH395 receives ICMP inaccessible interrupt
message, it saves the IP address, port and protocol type of the inaccessible IP packet in the inaccessible
information table, and then generates an interrupt. When the MCU receives the interrupt, it can send the
command GET_UNREACH_IPPORT to get the inaccessible information.

② GINT_STAT_IP_CONFLI: IP conflict interrupt. This interrupt is generated when CH395 detects that its
IP address is the same as that of other network devices in the same network segment.

③ GINT_STAT_PHY_CHANGE: PHY change interrupt. This interrupt is generated when PHY connection
of CH395 changes, for example, PHY state changes from the connected state to the disconnected state or
from the disconnected state to the connected state. MCU can send GET_PHY_STATUS command to get
the current PHY connection status.

④ GINT_STAT_DHCP: DHCP interrupt. If MCU enables DHCP function of CH395, CH395 will generate
this interrupt. MCU can send the command CMD_GET_DHCP_STATUS to get the DHCP status. If the
status is 0, it will indicate success; otherwise, it will indicate timeout failure.

⑤ GINT_STAT_SOCK0 - GINT_STAT_SOCK3: Socket interrupt. When there is an interrupt event in
Socket, CH395 will generate this interrupt. MCU needs to send GET_INT_STATUS_SN to get the
interrupt status of Socket. Please refer to GET_INT_STATUS_SN.
When this command is completed, CH395 will set INT# pin to high level and clear the global interrupt
status.

5.16. CMD_GET_GLOB_INT_STATUS_ALL
This command is used to get the global interrupt status. CH395 will output 2 bytes of global interrupt status
after receiving this command. Global interrupt status is defined as follows:

Bit Name Description

[12：18] - Reserved
11 GINT_STAT_SOCK7 Socket7 interrupt
10 GINT_STAT_SOCK6 Socket6 interrupt

http://wch.cn

CH395 Datasheet http://wch.cn

13

9 GINT_STAT_SOCK5 Socket5 interrupt
8 GINT_STAT_SOCK4 Socket4 interrupt
7 GINT_STAT_SOCK3 Socket3 interrupt
6 GINT_STAT_SOCK2 Socket2 interrupt
5 GINT_STAT_SOCK1 Socket1 interrupt
4 GINT_STAT_SOCK0 Socket0 interrupt
3 GINT_STAT_DHCP DHCP interrupt
2 GINT_STAT_PHY_CHANGE PHY status change interrupt
1 GINT_STAT_IP_CONFLI IP conflict
0 GINT_STAT_UNREACH Inaccessible interrupt

For bits 0-7, please refer to Section 5.15.

GINT_STAT_SOCK4 - GINT_STAT_SOCK7: Socket interrupt. When there is an interrupt event in Socket,
CH395 will generate this interrupt. MCU needs to send GET_INT_STATUS_SN to get the interrupt status of
Socket. Please refer to GET_INT_STATUS_SN.

CH395 can get the interrupt status through two commands CMD_GET_GLOB_INT_STATUS and
CMD_GET_GLOB_INT_STATUS_ALL. The low 8-bit interrupt status can be only gotten through the
former command, and the full interrupt status can be gotten through the latter command. It shall be noted
that any version of chip supports the command CMD_GET_GLOB_INT_STATUS. If the chip version
number is more than or equal to 0X44 and Socket4 -- Socke7 is used, only
CMD_GET_GLOB_INT_STATUS_ALL can be used. If the chip version number is less than 0X44, the
command CMD_GET_GLOB_INT_STATUS_ALL will not be supported.

5.17. CMD_SET_RETRAN_COUNT
This command is used to set the number of retries. It is necessary to input 1 byte of number of retries. The
allowable maximum value is 20. If the input data is more than 20, it will be processed as 20. The default
number of retries is 12, and retries are only valid in TCP mode.

5.18. CMD_SET_RETRAN_PERIOD
This command is used to set the retry cycle. It is necessary to input 2 bytes of number of cycles of (with low
bytes in front) in milliseconds. The allowable maximum value is 1000. The total retry time is N * M, N is the
number of retries, and M is the retry cycle. The default retry cycle is 500MS and retries are only valid in
TCP mode.

5.19. CMD_GET_CMD_STATUS
This command is used to get the command execution status. CH395 will output 1 byte of data, which is the
command execution state. The command execution status is as follows:

Code Name Description

00H CH395_ERR_SUCCESS Success
10H CH395_ERR_BUSY Busy, the command is being executed
11H CH395_ERR_MEM Memory Management error
12H CH395_ERR_BUF Buffer error
13H CH395_ERR_TIMEOUT Timeout
14H CH395_ERR_RTE Route error
15H CH395_ERR_ABRT Connection suspended

http://wch.cn

CH395 Datasheet http://wch.cn

14

16H CH395_ERR_RST Connection reset
17H CH395_ERR_CLSD Connection closed
18H CH395_ERR_CONN No connection
19H CH395_ERR_VAL Value error
1AH CH395_ERR_ARG Parameter error
1BH CH395_ERR_USE Used
1CH CH395_ERR_IF MAC error
1DH CH395_ERR_ISCONN Connected
20H CH395_ERR_OPEN Opened

If MCU receives CH395_ERR_BUSY, indicating that CH395 is executing the command, MCU shall delay
more than 2 milliseconds and send the command CMD_GET_CMD_STATUS again to get the status.

For the commands marked in gray of the command code table, it is necessary to send
CMD_GET_CMD_STATUS to get the execution status.

5.20. CMD_GET_REMOT_IPP_SN
This command is used to get the remote IP address and port number. It is necessary to input 1 byte of Socket
index value. CH395 will output 4 bytes of IP address and 2 bytes of port number (low bytes in front). After
Socket works in TCP Server mode and the connection is established, MCU can get the remote IP address and
port number through this command.

5.21. CMD_CLEAR_RECV_BUF_SN
This command is used to clear the Socket receive buffer. It is necessary to input 1 byte of Socket index value.
Upon receiving this command, CH395 will reset the receiving length of this Socket, and the receiving
pointer will point to the buffer head.

5.22. CMD_GET_SOCKET_STATUS_SN
This command is used to get Socket status. It is necessary to input a 1 byte of Socket index value. CH395
will output a 2-byte status code when receiving this command.

The first status code is the status code of Socket. The status code of Socket is defined as follows:

Code Name

00H SOCKET_CLOSED
05H SOCKET_OPEN

The second status code is TCP status code, which is only meaningful when TCP mode has been on. TCP
status code is defined as follows:

Code Name Description
00H TCP_CLOSED Closed
01H TCP_LISTEN Monitoring
02H TCP_SYN_SENT SYN sent
03H TCP_SYN_RCVD SYN received
04H TCP_ESTABLISHED TCP connection established
05H TCP_FIN_WAIT_1 The active closing side first sends FIN
06H TCP_FIN_WAIT_2 The active closing side receives an ACK from FIN
07H TCP_CLOSE_WAIT The passive closing side receives FIN

http://wch.cn

CH395 Datasheet http://wch.cn

15

08H TCP_CLOSING Closing
09H TCP_LAST_ACK The passive closing side sends FIN
0AH TCP_TIME_WAIT 2MLS waiting status

TCP status is defined in TCP/IP protocol. Please refer to TCP/IP protocol for the detailed meaning.

5.23. CMD_GET_INT_STATUS_SN
This command is used to get the interrupt status of Socket. It is necessary to input 1 byte of Socket index
value. After receiving this command, CH395 will output 1 byte of Socket interrupt code. The interrupt code
bits are defined as follows:

Bit Name Description

7 - Reserved
6 SINT_STAT_TIM_OUT Timeout
5 - Reserved
4 SINT_STAT_DISCONNECT TCP disconnected
3 SINT_STAT_CONNECT TCP connected
2 SINT_STAT_RECV Receive buffer not empty
1 SINT_STAT_SEND_OK Send Success
0 SINT_STAT_SENBUF_FREE Transmit buffer free

① SINT_STAT_SENBUF_FREE, transmit buffer free interrupt. After MCU writes data to the transmit
buffer of Socket, CH395 will quickly copy the data to the internal protocol stack or MAC buffer, in order
to encapsulate the data. When the data copying is finished, this interrupt will be generated. MCU can
continue to write the subsequent data to the transmit buffer. After MCU writes data to the transmit buffer
of Socket once, it must write the next data until the interruption is generated.

② SINT_STAT_SEND_OK, send OK interrupt. This interrupt indicates that the data packet is sent
successfully. This interrupt will be generated after Sokcet sends a packet of data successfully. After MCU
writes data to Socket buffer once, CH395 may encapsulate the data into several data packets for sending,
so several send OK interrupts may be generated.

③ SINT_STAT_CONNECT, TCP linkage interrupt, active only in TCP mode. It indicates that TCP
connection is successful, and MCU can transmit data only after the interrupt is generated.

④ SINT_STAT_DISCONNECT, TCP disconnection interrupt, only active in TCP mode, indicating TCP
disconnection.

⑤ SINT_STAT_TIM_OUT. This interrupt will be generated in TCP mode when a timeout occurs during a
TCP connection, disconnection, data sending and other processes. This interrupt will be generated if the
data is not sent successfully in IPRAW or UDP mode.

After the interrupts SINT_STAT_DISCONNECT and SINT_STAT_TIM_OUT are generated, CH395 takes
different actions depending on whether the FUN_PARA_FLAG_SOCKET_CLOSE bit is 1 or 0. If
FUN_PARA_FLAG_SOCKET_CLOSE is 0, CH395 will actively set the Socket state to the OFF state and
clear all relevant buffers after the above two interrupts are generated. Otherwise, it will not do any operation
on the Socket status and the relevant buffer, so as to facilitate the external MCU to read the residual data
after TCP is disconnected or timed out. When the external MCU reads the data, it must send a close
command to close the Socket.

5.24. CMD_SET_IP_ADDR_SN
This command is used to set the destination IP address of Socket. It is necessary to input 1 byte of Socket
index value and 4 bytes of destination IP address. When Socket works in IPRAW, UDP, or TCP Client mode,
the destination IP must be set before the command CMD_OPEN_SOCKET_SN is sent.

http://wch.cn

CH395 Datasheet http://wch.cn

16

5.25. CMD_SET_DES_PORT_SN
This command is used to set the Socket destination port. It is necessary to input 1 byte of Socket index value
and 2 bytes of destination port (the low bytes are in front). When Socket works in UDP or TCP Client mode,
this value must be set.

5.26. CMD_SET_SOUR_PORT_SN
This command is used to set the source port of Socket. It is necessary to input 1 byte of Socket index value
and 2 bytes of source port (low bytes in front). If two or more Sockets are in the same mode, the source port
numbers must not be the same. For example, Socket 0 is in UDP mode, the source port number is 600, and
Socket 1 is also in UDP mode. The source port number 600 cannot be used again, otherwise it may cause the
opening failure.

5.27. CMD_SET_PROTO_TYPE_SN
This command is used to set the working mode of Socket. It is necessary to input 1 byte of Socket index
value and 1 byte of working mode. The working mode is defined as follows:

Code Name Description

03H PROTO_TYPE_TCP TCP mode
02H PROTO_TYPE_UDP UDP mode
01H PROTO_TYPE_MAC_RAW MAC original message mode
00H PROTO_TYPE_IP_RAW IP original message mode

This command must be executed before CMD_OPEN_SOCKET_SN. Refer to 8.3 Application Reference
Steps for detailed steps.

5.28. CMD_OPEN_SOCKET_SN
This command is used to open Socket and use the necessary steps of Socket. It is necessary to input 1 byte of
Socket index value. After sending this command, MCU shall send GET_CMD_STATUS to query the
command execution status. After opening Socket in UDP, IPRAW or MACRAW mode and returning
successfully, data transmission can be performed. Before this command is sent, necessary settings must be
made for destination IP, protocol type, source port, destination port, etc. Please refer to 8.3 Application
Reference Steps for detailed steps.

5.29. CMD_TCP_LISTEN_SN
This command is only valid in TCP mode, enabling the Socket to be in the monitoring mode, namely, TCP
Server mode. It is necessary to input a 1 byte of Socket index value. This command must be executed after
OPEN_SOCKET_SN. After sending this command, MCU shall send GET_CMD_STATUS to query the
command execution status.

In TCP Server mode, the Socket will always detect connection events, and the interrupt
SINT_STAT_CONNECT will be generated until the connection is successful. Only one connection can be
established for each Socket. If an eligible connection event is received again, Socket will send TCP RESET
to the remote end tried to be connected.

5.30. CMD_TCP_CONNECT_SN
This command is only valid in TCP mode, enabling the Socket to be in the connection mode, namely, TCP
Client mode. It is necessary to input 1 byte of Socket index value. After sending this command, MCU shall
send GET_CMD_STATUS to query the command execution status.

http://wch.cn

CH395 Datasheet http://wch.cn

17

After this command is received, the Socket will initiate the connection event, and the interrupt
SINT_STAT_CONNECT will be generated after the successful connection. The interrupt
SINT_STAT_TIM_OUT will be generated if an exception occurs during the connection or the connection
fails after a certain amount of time. MCU receives this interrupt. If it needs to connect again, it will be
necessary to reopen the Socket and execute TCP_CONNECT_SN.

5.31. CMD_TCP_DISNCONNECT_SN
This command is only valid in TCP mode to disconnect the current TCP. It is necessary to input 1 byte of
Socket index value. After sending this command, MCU shall send GET_CMD_STATUS to query the
command execution status. SINT_STAT_DISCONNECT will be generated when the current TCP is
successfully disconnected.

5.32. CMD_WRITE_SEND_BUF_SN
This command is used to write data to Socket transmit buffer. It is necessary to input 1 byte of Socket index
value, 2 bytes of length (low bytes in front) and several bytes of data stream. The length of input data must
not be larger than the size of transmit buffer. However, in MACRAW mode, the maximum length of input
data can only be 1514, and any redundant data will be discarded. After the external MCU writes the data,
CH395 will encapsulate the data packet according to the working mode of Socket, and then send it. Before
MCU receives SINT_STAT_SENBUF_FREE, it is not allowed to write data into Socket transmit buffer
again.

5.33. CMD_GET_RECV_LEN_SN
This command is used to get the valid data length of the current receive buffer. It is necessary to input 1 byte
of Socket index value. CH395 outputs 2 bytes after receiving this command (low bytes in front).

5.34. CMD_READ_RECV_BUF_SN
This command is used to read data from Socket receive buffer. It is necessary to input 1 byte of Socket index
value and 2 bytes of length (low bytes in front). CH395 will output several bytes of data stream based on the
length value. In actual application, the command RECV_LEN_SN can be firstly sent to get the actual
effective length of the current buffer. The length of the read data can be less than the actual effective length
of the buffer, the unread data is still reserved in the receive buffer, and MCU can continue to read through
this command.

In MACRAW mode, the processing modes are different. In MACRAW mode, the receive buffer is a frame
buffer, which can cache only 1 frame of Ethernet data. After CH395 processes the command
READ_RECV_BUF_SN, Socket0 receive buffer will be cleared, so MCU shall read all valid data of the
buffer at a time.

5.35. CMD_CLOSE_SOCKET_SN
This command is used to close Socket. It is necessary to input a 1 byte of Socket index value. After Socket is
closed, the receive buffer and transmit buffer of Socket are emptied, but the configuration information is still
reserved, and you just need to open the Socket again when using the Socket the next time.

In TCP mode, CH395 will automatically disconnect TCP before turning off Socket.

5.36. CMD_SET_IPRAW_PRO_SN
This command is only valid in IPRAW mode. It is necessary to input 1 byte of Socket index value and 1 byte
of protocol code in IP packet protocol field. This command must be executed before OPEN_SOCKET_SN.

If multiple sockets adopt IPRAW mode, the protocol code cannot be used repeatedly. For example, if both
Socket 0 and Socket 1 adopt IPRAW mode, the protocol codes of the two sockets must not be the same,

http://wch.cn

CH395 Datasheet http://wch.cn

18

otherwise it may cause the failure to turn on Socket.

IPRAW has a higher data processing priority than UDP and TCP, so the protocol code must not be the same
as other sockets. For example, Socket 0 adopts IPRAW mode, and the protocol code is 17 (UDP protocol).
Socket 1 adopts UDP mode. This may cause Socket 1 data to be received by Socket 0.

5.37. CMD_PING_ENABLE
This command is used to turn PING on or off. It is necessary to input a 1-byte flag. If the flag is 1, it will
indicate that PING is on; if the flag is 0, it will indicate that PING is off.

5.38. CMD_GET_MAC_ADDR
This command is used to get MAC address. When receiving this command, CH395 will output 6 bytes of
MAC address.

5.39. CMD_DHCP_ENABLE
This command is used to start or stop DHCP. It is necessary to input a 1-byte flag. If the flag is 1, it will
indicate that DHCP is on; if the flag is 0, it will indicate that DHCP is off. CH395 must be initialized before
DHCP is started.

After DHCP is started, CH395 will broadcast DHCPDISCOVER message to the network to discover DHCP
Server, request the address and other configuration parameters after finding DHCP Server, and then generate
GINT_STAT_DHCP interrupt. MCU can send GET_DHCP_STATUS command to get DHCP status. If the
status code is 0, it will indicate success, and MCU can send the command GET_IP_INF to get IP, MASK
and other information. If the status code is 1, it will indicate error, which is generally caused by timeout, for
example, no DHCP Server is found.

DHCP is always in a working state after startup unless it receives a DHCP shutdown command from MCU.
During this process, if DHCP Server reassigns a configuration to CH395 and the configuration is different
from the original configuration, CH395 will still generate an interrupt.

After timeout interrupt is generated, if DHCP Server is not found, CH395 will continue to send
DHCPDISCOVER message at an interval of about 16 seconds.

It takes about 20MS to execute this command. MCU can send GET_CMD_STATUS to query whether the
execution has finished and the execution status

5.40. CMD_GET_DHCP_STATUS
This command is used to get the status of DHCP. Generally, after MCU receives the interrupt, this command
will be generated to get the execution status of DHCP. After receiving this command, CH395 outputs DHCP
status codes. There are two status codes of 0 and 1, which have the following meanings:

If the status code is 0, it will indicate success, and MCU can send the command GET_IP_INF to get IP,
MASK and other information.

If the status code is 1, it will indicate error, which is generally caused by timeout, for example, no DHCP
Server is found.

5.41. CMD_GET_IP_INF
This command is used to get IP, GatewayIP, MASK, DNS, etc. After receiving this command, CH395 will
output 20 bytes of data in turn, namely, 4 bytes of IP address, 4 bytes of GatewayIP, 4 bytes of subnet MASK,
4 bytes of DNS1 (primary DNS), and 4 bytes of DNS2 (secondary DNS).

After DHCP, this command can be sent to get the current CH395 information. If some configurations are not
obtained in DHCP, this configuration will be 0. For example, DNS is not always allocated in the local

http://wch.cn

CH395 Datasheet http://wch.cn

19

network DHCP, and both DNS1 and DNS2 are 0 when this command is sent to get the configuration
information.

5.42. CMD_SET_TCP_MSS
This command is used to set TCP MSS. It is necessary to input 2 bytes of TCP MSS value with a maximum
of 1460 and a minimum of 60. This value shall be set before CH395 is initialized, and it is not allowed to be
set after initialization.

5.43. CMD_SET_TTL
This command is used to set Socket TTL. It is necessary to input 1 byte of Socket index value and 1 byte of
TTL value. It shall be set after the Socket is opened, and the maximum value is 128.

5.44. CMD_SET_RECV_BUF
This command is used to set the receive buffer of Socket. It is necessary to input 3 bytes of data, the first
byte is the Socket index, the second byte is the starting block of the buffer, and the third byte is the number
of blocks.

Block 0 Block 1 Block 2 …… Block 46 Block 47

The internal buffer structure of CH395, as shown above, consists of 48 blocks. The length of each block is
512 bytes. MCU can freely allocate the size of each Socket receive buffer. After the initialization of CH395,
the buffer allocation is as follows:

Socket Buffer Start block Number of blocks

0
Receive buffer 0 8
Transmit buffer 8 4

1
Receive buffer 12 8
Transmit buffer 20 4

2
Receive buffer 24 8
Transmit buffer 32 4

3
Receive buffer 36 8
Transmit buffer 44 4

4
Receive buffer

NULL (empty, unallocated,
same below) 0

Transmit buffer NULL 0

5
Receive buffer NULL 0
Transmit buffer NULL 0

6
Receive buffer NULL 0
Transmit buffer NULL 0

7
Receive buffer NULL 0
Transmit buffer NULL 0

It can be seen from the above table that after CH395 is initialized, all buffers are allocated to Sockets 0-3.
There are 8 (4KB) receive buffers and 4 (2KB) transmit buffers. If the number of Sockets needed by MCU is
more than 4, the buffers shall be reallocated.

5.45. CMD_SET_SEND_BUF
This command is used to set the transmit buffer of Socket. It is necessary to input 3 bytes of data, the first
byte is the Socket index, the second byte is the starting block of the buffer, and the third byte is the number

http://wch.cn

CH395 Datasheet http://wch.cn

20

of blocks.

Refer to Section 5.47 for the definition and allocation of buffers.

5.46. CMD_EEPROM_ERASE
This command is used to erase EEPROM. CH395 chip has a 4KB EEPROM. The data is 0XFF after erasing.
Before write operation to EEPROM, all data in the destination area must be 0XFF.

5.47. CMD_EEPROM_WRITE
This command is used to write EEPROM. It is necessary to input 2 bytes of address, 1 byte of length, and
several bytes of data stream. The length of byte stream must be no more than 64 bytes.

5.48. CMD_EEPROM_READ
This command is used to read EEPROM. It is necessary to input 2 bytes of address and 1 byte of length.
CH395 will output several bytes of data stream based on the length. The length value must be no more than
64 bytes. The external MCU shall wait for 1MS to read the data after sending the length.

5.49. CMD_READ_GPIO_REG
This command is used to read GPIO register. It is necessary to input a 1 byte of register address. CH395
outputs a 1 byte of register value. All registers are 8-bit. Bits 0-7 correspond to GPIO 0-7 respectively. Its
addresses and meanings are shown in the following table:

Address: Name Description

80H GPIO_DIR_REG Direction register, 1: output; 0: input
81H GPIO_IN_REG Input data register
82H GPIO_OUT_REG Output data register
83H GPIO_CLR_REG 0: hold ; 1: clear
84H GPIO_PU_REG Pull-down register, 1: pull-up enable; 0: pull-up disable
85H GPIO_PD_REG Pull-up register, 1: pull-down enable; 0: pull-down disable

CH395 has 8 GPIOs. GPIO3 is output by default. After successful initialization of CH395, CH395 outputs
low level, and the rest of GPIOs are inputs by default.

5.50. CMD_WRITE_GPIO_REG
This command is used to write GPIO register. It is necessary to input a 1 byte of register address and a 1 byte
of register value.

5.51. CMD_SET_FUN_PARA
This command is used to set the functional parameters. It is necessary to input 4 bytes of parameters. The
meanings of the parameters are as follows:

Bit Name Reset value Description
0 - - Reserved, it must be 0

1 FUN_PARA_FLAG_TCP_SERVER 0
TCP server multi-connection mode
enable bit, 0x44 and later version

support

2 FUN_PARA_FLAG_LOW_PWR 0
Low power mode enable bit, 0x44 and

later version support

3 FUN_PARA_FLAG_SOCKET_CLO
SE

0 Socket OFF mode, 0x46 and later
version support

http://wch.cn

CH395 Datasheet http://wch.cn

21

4 FUN_PARA_FLAG_DISABLE_SEN
D_OK

0 Disable Socket SEND_OK interrupt,
0x46 and later version support

5:31 Reserved

FUN_PARA_FLAG_TCP_SERVER: TCP server multi-connection mode. This bit is 1, TCP server can be
connected to multiple clients. For use method, please refer to 8.3.6 "Global configuration", active for all
sockets.

FUN_PARA_FLAG_LOW_PWR: low power mode. This bit is 1. CH395 enters low power mode. The
working mode of CH395 can be divided into standard mode and low power mode. The working current in
the low power mode is about 50MA less than that in the standard mode, which is suitable for the occasions
requiring high power.

FUN_PARA_FLAG_SOCKET_CLOSE: This parameter is mainly used for TCP. If this bit is 0, it will
indicate that CH395 will actively turn off Socket after SINT_STAT_DISCONNECT or
SINT_STAT_TIM_OUT interrupt is generated. If this bit is 1, it will indicate that MCU will turn off Socket
after the above two interrupts are generated. If the Socket is turned off, CH395 will clear the internal buffer
of the Socket and some related variables. In some applications, if CH395 turn off the Socket, the residual
data may be forcibly cleared. In this case, MCU can read the data and then turn off the Socket.

FUN_PARA_FLAG_DISABLE_SEND_OK: Disable SINT_STAT_SEND_OK interrupt. If this bit is 1,
CH395 will not generate the interrupt SINT_STAT_SEND_OK.

Note that the command CMD_SET_FUN_PARA must be set before initialization and cannot be set again
once it is initialized. In addition, pay attention to the version number suitable for the parameter.

5.52. CMD_SET_KEEP_LIVE_IDLE
This command is used to set the KeepLive free time. It is necessary to input 4 bytes of time value in
millisecond. This command is used to connect TCP. KeepLive free time refers to the time between no data
sent and received on a TCP connection and KeepLive data packet sent. The default value is 20000.

5.53. CMD_SET_KEEP_LIVE_INTVL
This command is used to set KeepLive timout. It is necessary to input 4 bytes of time value in millisecond.
This command is used to connect TCP. KeepLive timeout refers to the time for waiting for response after
KeepLive data packet is sent. The default value is 15000.

5.54. CMD_SET_KEEP_LIVE_CNT
This command is used to set the number of KeepLive timeouts. It is necessary to input 1 byte of number of
timeouts. This command is used to connect TCP. Number of KeepLive timeouts refers to the allowable
maximum number of consecutive no response of KeepLive data packet. The default value is 9.

Assume that the free time of KeepLive is IDLE, the timeout is INTVL, and the number of timeouts is CNT.

If Socket connection enables KeepLive, Socket will start sending KeepLive packets when TCP connection is
free (there is no data sent or received) within IDLE milliseconds. If the remote side responds ACK within
INTVL milliseconds, the connection will be considered normal. Otherwise, the Socket considers the timeout
after INTVL milliseconds and starts sending the KeepLive packet again. If no ACK packet is received within
CNT times, the current connection will be considered to be disconnected and SINT_STAT_TIM_OUT or
SINT_STAT_DISCONNECT will be generated.

If the three variables, IDLE, INTVL and CNT, are required to be configured, it shall be noted that IDLE
must be larger than INTVL, and all of them are multiples of 500.

http://wch.cn

CH395 Datasheet http://wch.cn

22

5.55. CMD_SET_KEEP_LIVE_SN
This command is used to enable or disable KeepLive of Socket. It is necessary to input a 1 byte of Socket
index value and a 1 byte of configuration value. When the configuration value is 0, it indicates that the
KeepLive function of Socket is disabled; when the configuration value is 1, it indicates that the KeepLive
function is enabled. It is disabled by default.

When Socket is TCP client, use this command to enable the KeepLive function after Socket is created.
When Socket is TCP server, use this command to enable the KeepLive function after
SINT_STAT_CONNECT is generated.

6. Functional Specification
6.1 Communication Interfaces of MCU
There are three communication interfaces supported between CH395 and MCU: 8-bit parallel interface, SPI
synchronous serial interface and asynchronous serial port. During chip power on reset, CH395 will sample
the statuses of SEL and TXD pins, and select the communication interface according to the combination of
these two pin statuses. Refer to the following table (X in the table means that this bit is not concerned, 0
means low level, 1 means high level or suspended).

SEL pin TXD pin Select the communication interface

1 1 UART
1 0 SPI
0 1 8-bit parallel port
0 0 Wrong interface

The interrupt request of INT# pin output of CH395 chip is active at low level by default and can be
connected to the interrupt input pin or ordinary input pin of MCU. MCU can get the interrupt request of
CH395 in interrupt mode or query mode.

6.2. Parallel Interfaces
The parallel port signal line includes: 8-bit bidirectional data buses D7-D0, read strobe input pin RD#, write
strobe input pin WR#, chip selection input pins PCS# and address input pin A0. PCS# pin of CH395 chip is
driven by the address decoding circuit, which is used for device selection when MCU has multiple peripheral
devices. CH395 chip can be easily hooked to the system buses of various 8-bit DSP and MCU through a
passive parallel interface, and can coexist with multiple peripheral devices.

For MCU similar to the Intel parallel port timing sequence, RD# and WR# pins of CH395 chip can be
connected to the read strobe output pin and write strobe output pin of MCU respectively. For MCU similar to
Motorola parallel port time sequence, the RD# pin of the CH395 chip shall be connected to the low level,
and the WR# pin shall be connected to the reading and writing direction output pin R/-W of MCU.

The following table is the truth table of the parallel port I/O operation (X in the table means that this bit is
not concerned, and Z means that three states of CH395 are disabled).

PCS# WR# RD# A0 D7-D0 Actual operation on CH395 chip

1 X X X X/Z CH395 is not selected, and no any operation is made
0 1 1 X X/Z Although selected, no any operation is made
0 0 1/X 1 Input Write a command code to the command port of CH395
0 0 1/X 0 Input Write a command code to the data port of CH395
0 1 0 0 Output Read data from the data port of CH395

http://wch.cn

CH395 Datasheet http://wch.cn

23

0 1 0 1 Output Read interface status from the command port of CH395:
Bit 7 is an interrupt flag, active low efficiency, equivalent to INT# pin

CH395 chip occupies two address bits. When A0 pin is at high level, write a new command, or read the
interface status; when A0 pin is at low level, select the data port to read and write the data.

MCU reads and writes CH395 chip through an 8-bit parallel port. All operations are composed of a
command code, several input data and several output data. Some commands do not need input data, and
some commands do not have output data. The command operation steps are as follows:
① MCU writes the command code to the command port when A0 is 1;
② If the command has input data, write the input data in sequence when A0 is 0, one byte at a time;
③ If the command has output data, read the output data in sequence when A0 is 0, one byte at a time;
④ The command is completed. Execution may be required to be queried for some commands. MCU

can be paused or go to ① to continue to execute the next command.

6.3. SPI
The SPI signal lines include: SPI chip selection input pin SCS, serial clock input pin SCK, serial data input
pin SDI and serial data output pin SDO. CH395 can be hooked to SPI serial buses of various DSP and MCU
with fewer connections through SPI serial interface by using less connecting wires, or be connected
point-to-point over a longer distance.

The SCS pin of CH395 chip is driven by the SPI chip selection output pin or the general output pin of MCU.
SCK pin is driven by the SPI clock output pin SCK of MCU. SDI pin is driven by the SPI data output pin
SDO or MOSI, and SDO pin is connected to the SPI data input pin SDI or MISO of MCU. For the hardware
SPI interface, it is recommended that the SPI setting is CPOL=CPHA=0 or CPOL=CPHA=1, and the data
bit sequence is MSB first. SPI interface of CH395 supports MCU to simulate SPI interface for
communication with the common I/O pins.

SPI interface of CH395 supports SPI mode 0 and SPI mode 3. CH395 always inputs data from the rising
edge of the SPI clock SCK, and outputs data from the falling edge of SCK when the output is allowed. The
data bit sequence is MSB first, and 8 full bits are a byte.

Steps for SPI operation:
① MCU generates the SPI chip selection of CH395 chip, which is active at low level;
② MCU sends a byte of data in SPI output mode. CH395 always takes the first byte received after SPI

chip selection SCS is valid as the command code and takes the subsequent bytes as data;
③ MCU delays for TSC time (about 1.5uS) to wait for SPI interface of CH395 to be free;
④ If it is a write operation, MCU sends a byte of write data to CH395. After waiting for SPI interface

to be free, MCU continues to send several bytes of write data, and CH395 receives them in turn
until MCU disables SPI chip selection.

⑤ If it is a read operation, MCU receives a byte of data from CH395. After waiting for SPI interface
to be free, MCU continues to receive several bytes of data from CH395 until MCU disables SPI
chip selection;

⑥ MCU disables the SPI chip selection of CH395 chip to end the current SPI operation.

The figure below is the SPI interface logic sequence diagram. The first one sends the command 12H and
writes 34H, and the second one sends the command 28H and reads the data 78H.

http://wch.cn

CH395 Datasheet http://wch.cn

24

6.4. UART
The signal line of UART includes serial data input pin RXD and serial data output pin TXD. CH395 can be
connected point-to-point to DSP and MCU through a serial interface by using less connecting wires over a
longer distance.

RXD and TXD of CH395 chip can be connected to the serial data output pin and serial data input pin of
MCU respectively.

The serial data format of CH395 is the standard byte transmission mode, consisting of 1 start bit, 8 data bits
and 1 stop bit.

CH395 not only supports hardware to set the default serial communication baud rate, but also supports MCU
to select the appropriate communication baud rate through the command CMD_SET_BAUDRATE at any
time. After each power on reset, the default serial communication baud rate of CH395 is set by the level
combination of three pins SDO, SDI and SCK. Refer to the following table (0 represents low level, and 1
represents high level or suspended).

SDO pin SDI pin SCK pin Default communication baud rate after power on reset
1 1 1 9600 bps
1 1 0 57600 bps
1 0 1 115200 bps
1 0 0 460800 bps
0 1 1 250000 bps
0 1 0 1000000 bps
0 0 1 3000000 bps
0 0 0 921600 bps

In order to distinguish the command code from the data, CH395 requires MCU to first send two synchronous
code bytes (57H and ABH) through UART, then send the command code, and then send or receive the data.
CH395 will check the interval between the above two synchronous code bytes and between the synchronous
code and the command code. If the interval is greater than the serial input timeout of SER_CMD_TIMEOUT
(approximately 40mS), CH395 will discard the synchronous code and the command packet. The operation
steps of serial port command are as follows:
① MCU sends the first synchronous code 57H to CH395 through the serial port;
② MCU sends the second synchronous code 0ABH to CH395;

http://wch.cn

CH395 Datasheet http://wch.cn

25

③ MCU sends the command code to CH395;
④ If the command has input data, MCU will send the input data to CH395 in turn, one byte at a time;
⑤ If the command has output data, MCU will receive the output data from CH395 in turn, one byte at

a time;
⑥ The command is completed. Interrupt notification may be generated after some commands are

executed, and the interrupt status code will be directly sent through the serial port. MCU can be
paused or go to ① to continue to execute the next command.

6.5. Other Hardware
CH395 chip integrates 10/100M Ethernet MAC and PHY, CRC data check, passive parallel interface,
SPI-Slave controller, asynchronous serial port, SRAM, high-speed MCU, firmware program, crystal
oscillator and PLL frequency multiplier, power on reset circuit, etc.

ELINK# pin of CH395 chip is used for Ethernet status connection and communication indication. It can be
externally connected to LED with a current limiting resistor connected in series to indicate connection and
communication status.

RXP, RXN, TXP and TXN of CH395 chip are Ethernet signal lines. PHY of CH395 supports automatic
switching of MDI/MDIX line, but only valid in automated negotiation mode.

CH395 chip has a built-in power on reset circuit. Generally, no external reset is required. RSTI pin is used to
input an asynchronous reset signal from the outside; when RSTI pin is at low level, CH395 chip will be reset;
when RSTI pin recovers to a high level, CH395 will continuously delay reset for about 35mS, and then enter
the normal working status. In order to reliably reset and reduce external interference during the power-on
period, a capacitor with a capacity of about 0.1uF can be connected across the RSTI pin and the ground.

RST pin of CH395 chip is an active high reset status output pin, which can be used to provide a power on
reset signal to the external MCU. RST pin outputs high level when CH395 is reset during power-on or
externally forced to be reset and during reset delay; after CH395 is reset and the communication interface is
initialized, RST pin recovers to the low level.

When CH395 chip works normally, 30MHz clock signal shall be provided for it externally. CH395 chip has
a built-in crystal oscillator and an oscillating capacitor. Generally, the clock signal is generated by the
built-in oscillator of CH395 through a crystal stable frequency oscillator, and the peripheral circuit is only
required to be connected with a crystal with a nominal frequency of 30MHz between XI and XO pins.

7. Parameters
7.1. Absolute Maximum Value
Critical value or exceeding the absolute maximum value may cause the chip to work abnormally or even be
damaged.

Name Parameter description Min. Max. Unit

TA
Ambient temperature during

operation
VCC33=3.3V
VCC18=1.8V

-40 85 ℃

TS Ambient temperature during storage -55 125 ℃
VCC33 Supply voltage (VCC33 connects to power, GND to ground) -0.4 4.2 V
VCC18 Supply voltage (VCC18 connects to power, GND to ground) -0.4 2.3 V

VIO Voltage on the input or output pins -0.4 VCC33+0.4 V
VIO5 Support voltage on 5V withstand voltage input or output pin -0.4 5.4 V

http://wch.cn

CH395 Datasheet http://wch.cn

26

7.2. Electrical Parameters
Test Conditions: TA=25℃, VCC33=3.3V, VCC18=1.8V

Name Parameter description Min. Typ. Max. Unit

VCCxx Power voltage
VCC33 2.7 3.3 3.6

V
VCC18 1.65 1.8 1.95

ICC Total supply current during
operation

VCC33=3.3V 90(50) 220(195) mA

ISLP

Supply current at the low
power status

I/O pin suspended/ internal
pull-down

VCC33=3.3V 15 mA

VIL Low level input voltage -0.4 0.7 V
VIH High level input voltage 2.0 VCC33+0.4 V
VOL Low level output voltage (4mA draw current) 0.4 V
VOH High level output voltage (4mA output current) VCC33-0.4 V

IUP
Input current at the input terminal of built-in

pull-up resistor
20 40 100 uA

IDN Input current at the input terminal of built-in
pull-down resistor

-20 -40 -100 uA

VR Voltage threshold of power-on reset 1.4 1.5 2.5 V
Note: The parameters in brackets are in low power mode.

7.3. Timing Parameters
Test Conditions: TA=25℃, VCC33=3.3V, VCC18=1.8V, refer to attached figure

Name Parameter description Min. Typ. Max. Unit

FCLK Input clock frequency of XI pin 29.995 30.00 30.005 MHz
TPR Internal power-on reset time 15 50 60 mS
TRI Effective signal width of external reset input 100 nS
TRD Reset delay after external reset input 15 50 60 mS

TWAK Wake-up time when exiting from low-power state 3 7 15 mS
TE1 Execution time of command CMD_RESET_ALL 10 50 60 mS
TE2 Execution time of command CMD_INIT_CH395 300 350 400 mS

TE3
Execution time of command with status to be

gotten 1 5 mS

TE4
Execution time of command
CMD_SET_BAUDRATE 200 1000 2000 uS

TE0 Execution time of other commands 0.8 1.5 uS
TSX Interval time between command codes 1.5 uS
TSC Interval time between command code and data 0.6 uS
TSD Interval time between data and data 0.3 uS

TINT Receive the command GET_STATUS until INT#
pin undoes the interrupt

 1 2 uS

http://wch.cn

CH395 Datasheet http://wch.cn

27

7.4. Timing Parameters of Parallel Port
Test Conditions: TA=25℃, VCC33=3.3V, VCC18=1.8V, refer to attached figure.
(RD means that RD# signal is valid and PCS# signal is valid; perform read operation when RD#=PCS#=0)
(WR means that WR# signal is valid and PCS# signal is valid, perform write operation when WR#=PCS#=0)
(In low power mode, all parameters in the table are multiplied by 2)
Name Parameter description Min. Typ. Max. Unit

TWW Write pulse width 30 nS
TRW Read pulse width 35 nS
TAS Address input setup time before RD or WR 3 nS
TAH Address input hold time after RD or WR 3 nS
TIS Data input setup time before write strobe WR 0 nS
TIH Data input hold time after strobe writing WR 3 nS
TON Read active to valid data output 2 7 15 nS
TOF Read inactive to invalid data output 3 12 25 nS

7.5. SPI Timing Parameters
Test Conditions: TA=25℃, VCC33=3.3V, VCC18=1.8V, refer to attached figure.
(In low power mode, all parameters in the table are multiplied by 2)
Name Parameter description Min. Typ. Max. Unit

TSS Setup time of valid SCS before SCK rising edge 25 nS
TSH Hold time of valid SCS after SCK rising edge 12 nS
TNS Setup time of invalid SCS before SCK rising edge 12 nS
TNH Hold time of invalid SCS after SCK rising edge 12 nS
TN Time of invalid SCS (SPI operation interval time) 60 nS

TCH SCK clock high-level time 15 nS

http://wch.cn

CH395 Datasheet http://wch.cn

28

TCL SCK clock low-level time 15 nS
TDS SDI input setup time before SCK rising edge 4 nS
TDH SDI input hold time after SCK rising edge 2 nS
TOX Output change from SCK falling edge to SDO 2 6 12 nS
TOZ SCS invalid to SDO output invalid 3 10 18 nS

8. Application
8.1 Hardware Circuit Design

http://wch.cn

CH395 Datasheet http://wch.cn

29

Note: for space limitation, the figure above is a schematic diagram, omitting power supply related
decoupling capacitor circuit, etc. In order to improve the stability of the chip, each power pin is connected
with a 0,1uF decoupling capacitor near to the ground. For detailed schematic diagram, please refer to our
schematic diagram document CH395SCH.PDF.

If CH395 is required to be configured as 8-bit parallel communication mode PARALLEL, SEL pin shall be
connected to GND and TXD pin shall be suspended. Pins used for communication between this interface and
peripheral MCU are A0, PCS#, RD#, WR#, D0-D7, INT# (optional) and RSTI (optional).

If CH395 is required to be configured as SPI serial communication mode, TXD pin shall be connected to
GND and SEL pins shall be suspended. Pins used for communication between this interface and peripheral
MCU are SCS, SCK, SDO, SDI, INT# and RSTI (optional).

If CH395 is required to be configured as asynchronous serial port communication mode UART/SERIAL,
SEL pin and TXD pin shall be suspended. Pins used for communication between this interface and
peripheral MCU are TXD, RXD, INT# and RSTI (optional). The default serial communication baud rate is
set by the three pins of SDO, SDI and SCK. If the communication baud rate of CH395 serial port is required
to be dynamically modified, it will be suggested that the I/O pin of MCU control RSTI pin of CH395, so as
to reset CH395 to return to the default communication baud rate when necessary.

As INT# pins and TXD pin can only provide weak high level output current during CH395 reset, when a
long distance connection is conducted, in order to avoid INT# or TXD interference caused by MCU
misoperation during CH395 reset, a pull-up resistor with resistance of 2KΩ-5KΩ can be added on INT# pin
or TXD pin to maintain a stable high level. After CH395 chip reset is completed, INT# and TXD pins will be
able to provide either a high level output current of 4mA or a low level sinking current of 4mA.

In the 8-bit parallel port mode, the interface status is gotten by inquiring the status port of CH395 (namely,
the command port). Bit 7 is an interrupt flag bit, which is active low and equivalent to the query of INT# pin.

http://wch.cn

CH395 Datasheet http://wch.cn

30

If bit 7 is 0, there will be an interrupt request. In SPI and UART modes, interrupts must be gotten through
INT#.

P1 is RJ45 port, used to connect network equipment such as switch and router. It includes two pairs of
Ethernet differential signals, unused pins of RJ45 shall be connected with a 1000P/2KV capacitor to the
ground through 75Ω resistor.

U4 is a network transformer with electrical isolation, impedance matching and other functions. The center
tap on the inside (close to CH395) shall be connected to 3.3V, and the unused pins on the outside (close to
RJ45) shall be connected to 1000P/2KV capacitor to the ground through 75Ω resistor.

R2 is a regulating resistor for Ethernet signals. 12-18K resistor can be selected. 12K resistor is the best and
18K resistor has the lowest power.

GPIO is not given in this figure. Please refer to the schematic diagram of CH395EVT for details.

When PCB is actually made, R8-R11, C23, C30 shall be as close as possible to the pin 5 of U4. TXOP
(RXIP) and TXON(RXIN) are differential signals, which shall be wired close to the parallel line. The ground
wire shall be provided or copper shall be clad as far as possible on both sides to reduce interference from the
outside. The length of relevant signals of crystals XI and XO shall be shortened as much as possible. In order
to reduce the interference of high-frequency clock with the outside, the baselines shall be surrounded or
copper shall be clad around relevant components.

8.2. Application Basis
CH395 internally integrates IPv4, ARP, ICMP, IGMP, UDP, TCP and other protocols, and their relationship
diagram is as follows:

TCP and UDP are two important transport layer protocols, both of which use IP as the network layer
protocol.

TCP is a connection-oriented transport layer protocol, which can provide reliable byte stream transport
services.

UDP is a simple datagram-oriented transport layer protocol. Different from TCP, UDP cannot guarantee that
the datagram reaches the destination accurately.

TCP UDP

IGMP IP ICMP

RARP Hardware
interface ARP

 Transport layer

Network
layer

Link
layer

Media

http://wch.cn

CH395 Datasheet http://wch.cn

31

TCP provides high reliability communication for network devices, its work includes: delivering the
application to its data and dividing it into the suitable blocks, delivering them to the network layer below,
confirming the received packets, set the timeout clock, etc. As the transport layer provides high reliability
end-to-end communication, the application layer client ignores all the details. UDP provides a very simple
service for the application layer, which is faster than TCP. It just sends the datagram from one network
terminal to the other network terminal, but it does not guarantee that the datagram can reach the other end.
Any necessary reliability must be provided by the application layer.

IP is the protocol on the network layer, which is simultaneously used by both TCP and UDP. Each set of data
of TCP and UDP is transmitted in the network through the IP layer.

ICMP is an ancillary protocol of IP protocol, which is used by IP layer to exchange error messages or other
important information with other hosts or routers, for example, when CH395 generates inaccessible
interrupt, error messages are exchanged through ICMP. PING also uses the ICMP protocol.

IGMP is an Internet group management protocol, which is mainly used to multicast a UDP datagram to
multiple hosts.

ARP is an address resolution protocol, which is used to translate the addresses used by the IP layer and the
network interface layer.

For basic formats such as Ethernet frame, IP, UDP, TCP packet, etc., please refer to Section 8.3.

8.3. Application Reference Steps
This chapter introduces the common operation steps. Refer to the example program for details.

8.3.1. Initialize CH395 (necessary operation)
① Send the command CMD_SET_MAC_ADDR to set MAC address of CH395;
② Send the command CMD_SET_IP_ADDR to set IP address of CH395;
③ Send the command CMD_SET_GWIP_ADDR to set the gateway IP address of CH395;
④ Send the command CMD_SET_MASK_ADDR sets the subnet mask of CH395;
⑤ Send the command CMD_INIT_CH395 to initialize CH395;
⑥ After delay for more than 2MS, send the command CMD_GET_CMD_STATUS to get the execution

status of CMD_INIT_CH395. If CH395_ERR_BUSY is returned, it will indicate that CH395 is
internally executing the command and needs to execute ⑥ again; If CH395_ERR_SUCCESS is
returned, it will indicate that the command is executed successfully. Generally, it takes 350mS to
complete CMD_INIT_CH395.

Generally, the step ① is not required. MAC address assigned by IEEE has been burned when CH395 chip
is delivered.

If DHCP is required to be started, the steps ②-④ will not be required.

The step ④ is optional. The default subnet mask is 255.255.255.0, which is generally not required to be set.

After CH395 receives the command CMD_INIT_CH395, it initializes the internal TCP/IP stack, MAC and
PHY, and then MAC and PHY are initialized to the automated negotiation mode. If a PHY is required to
work in other modes, such as 10M full-duplex mode, the command CMD_SET_PHY is required to be sent
for setting after successful execution of CMD_INIT_CH395.

8.3.2. Initialize Socket to MACRAW mode
Initialization steps are as follows:
① Send the command CMD_SET_PROTO_TYPE_SN to set Socket to work in MACRAW mode;
② Send the command CMD_OPEN_SOCKET_SN to turn on Socket;

http://wch.cn

CH395 Datasheet http://wch.cn

32

③ After delay for more than 2MS, send the command CMD_GET_CMD_STATUS to get the execution
status of CMD_OPEN_SOCKET_SN. If CH395_ERR_BUSY is returned, it will indicate that CH395 is
internally executing the command and needs to execute ③ again; If CH395_ERR_SUCCESS is
returned, it will indicate that the command is executed successfully. Other values indicate the failure to
turn on Socket.

IEEE802.3 Ethernet frame format:
Destination

MAC Source MAC Type Data CRC32

6 Byte 6 Byte 2 Byte 46-1500 Byte 4 Byte

In MACRAW mode, CH395 will transparently transmit the data between Ethernet and MCU without TCP/IP
data encapsulation. When CH395 receives the data, it will check the Ethernet redundant check CRC32. If the
check is wrong, the data packet will not be forwarded to MCU. When CH395 sends data, Ethernet redundant
check CRC32 is added at the end of data packet. The length of data written by MCU to CH395 shall not be
more than 1514 each time, and CH395 will encapsulate the data written by MCU into a frame for sending.
When CH395 receives data from Ethernet, it will notify MCU. At this time, MCU shall immediately read all
data from the internal receive buffer of CH395.

Only Socket0 can be set to this mode, and other sockets will not be available.

8.3.3. Initialize Socket to IPRAW mode
Initialization steps are as follows:
① Send the command CMD_SET_PROTO_TYPE_SN to set Socket to work in IPRAW mode;
② Send the command CMD_SET_IP_ADDR_SN to set the destination IP address;
③ Send the command CMD_SET_IPRAW_PRO_SN to set the protocol field;
④ Send the command CMD_OPEN_SOCKET_SN to turn on Socket;
⑤ After delay for more than 2MS, send the command CMD_GET_CMD_STATUS to get the execution

status of CMD_OPEN_SOCKET_SN. If CH395_ERR_BUSY is returned, it will indicate that CH395 is
internally executing the command and needs to execute ⑤ again; If CH395_ERR_SUCCESS is
returned, it will indicate that the command is executed successfully; if other values are returned, it will
indicate the failure to turn on Socket.

IP message structure:
Destination

MAC
Source MAC Type IP header IPRAW data CRC32

6 Byte 6 Byte 2 Byte 20 Byte Max. 1480 Bytes 4 Byte

After MCU writes several bytes of data stream to CH395, CH395 encapsulates the protocol field of this
Socket in the IP header and encapsulates the data stream in the IPRAW data division for sending. The
maximum length allowed to be sent per packet in IPRAW mode is 1480 bytes. If the length of the data
stream written by MCU is more than 1480 bytes, CH395 will encapsulate the data stream into several IP
packets for sending, and the interrupt SINT_STAT_SEND_OK will be generated after each packet is
successfully sent. The length of byte written by MCU each time shall not be more than the length of the
transmit buffer, and the next write data can only be performed after the interrupt
SINT_STAT_SENBUF_FREE is received. If the interrupt SINT_STAT_TIM_OUT is generated, it will
indicate the failure to send data. There are usually two reasons for failure to send data:
① If the destination IP address and CH395 are on the same subnet, the network device at the

destination IP address may not be online.
② If the destination IP address and CH395 are not on the same subnet, the gateway of CH395 may not

be online.

http://wch.cn

CH395 Datasheet http://wch.cn

33

When receiving IP data packets, CH395 first tests whether the protocol field is the same as that set by Socket.
If so, CH395 will copy IPRAW data packets to the receive buffer and generate SINT_STAT_RECV interrupt.
Upon receipt of this interrupt, MCU can send the command CMD_GET_RECV_LEN_SN to get the length
of the receive buffer data, and then send the command CMD_READ_RECV_SN to read the data in the data
buffer. MCU can read all the data at a time or read it for several times. As CH395 cannot perform flow
control in IPRAW mode, it is suggested that MCU shall read all the data immediately after querying the
interrupt port of the received data, so as not to be covered by the subsequent data.

Notes on protocol field settings
CH395 has a higher IPRAW processing priority than UDP and TCP. If the IP protocol field is set to 17 (UDP)
or 6 (TCP), there may be the possibility of conflicting with other Sockets, which shall be avoided when in
use. The following two situations are listed for explanation:
① Socket0 is set to IPRAW mode, IP protocol field is set to 17, and Socket1 is set to UDP mode. In

UDP mode, the IP packet protocol field is also 17, so Socket1 communication data will be
intercepted by Socket0, and data cannot be received.

② Socket0 is set to IPRAW mode, IP protocol field is set to 6, and Socket1 is set to TCP mode. In TCP
mode, the IP packet protocol field is also 6, so Socket1 communication data will be intercepted by
Socket0, and data cannot be received.

8.3.4. Initialize Socket to UDP mode
Initialization steps are as follows:
① Send the command CMD_SET_PROTO_TYPE_SN to set Socket to work in UDP mode;
② Send the command CMD_SET_IP_ADDR_SN to set the destination IP address;
③ Send the command CMD_SET_DES_PORT_SN to set the destination port;
④ Send the command CMD_SET_SOUR_PORT_SN to set the source port;
⑤ Send the command CMD_OPEN_SOCKET_SN to turn on Socket;
⑥ After delay for more than 2MS, send the command CMD_GET_CMD_STATUS to get the

execution status of CMD_OPEN_SOCKET_SN. If CH395_ERR_BUSY is returned, it will indicate
that CH395 is internally executing the command and needs to execute ⑥ again; If
CH395_ERR_SUCCESS is returned, it will indicate that the command is executed successfully; if
other values are returned, it will indicate the failure to turn on Socket.

UDP message structure:
Destination

MAC
Source
MAC

Type IP header UDP
header

UDP data CRC32

6 Byte 6 Byte 2 Byte 20 Byte 8 Byte Max. 1472 Bytes 4 Byte

UDP is a simple, unreliable, datagram-oriented transport layer protocol with fast transmission speed, which
cannot guarantee that the data can reach the destination. Therefore, the application layer must guarantee the
reliable and stable transmission.

After MCU writes several bytes of data stream to CH395, CH395 encapsulates the data stream in the UDP
data division for sending. The maximum length sent per packet in UDP mode is 1472 bytes. If the length of
the data stream written by MCU is more than 1472 bytes, CH395 will encapsulate the data stream into
several UDP packets for sending, and the interrupt SINT_STAT_SEND_OK will be generated after each
packet is successfully sent. The length of byte written by MCU each time shall not be more than the length
of the transmit buffer, and the next write data can only be performed after the interrupt
SINT_STAT_SENBUF_FREE is received. The interrupt SINT_STAT_TIM_OUT will be generated if data
sending fails. There are usually two reasons for failure to send data:
① If the destination IP address and CH395 are on the same subnet, the network device at the

destination IP address may not be online.

http://wch.cn

CH395 Datasheet http://wch.cn

34

② If the destination IP address and CH395 are not on the same subnet, the gateway of CH395 may not
be online.

When receiving UDP message, CH395 copies UDP data to the Socket receive buffer and generates
SINT_STAT_RECV interrupt. Upon receipt of this interrupt, MCU can send the command
CMD_GET_RECV_LEN_SN to get the length of the receive buffer data, and then send the command
CMD_READ_RECV_SN to read the data in the data buffer. As CH395 cannot perform flow control in UDP
mode, it is suggested that the received data shall be read quickly in time, so as not to be covered by the
subsequent data.

CH395 supports two UDP modes: UDP client and UDP server. UDP client can only communicate with the
specified IP and port, and UDP server can communicate with any remote IP and port.

There are some differences in usage:
① Initialization step ②. If the destination IP address is 0XFFFFFFFF, this Socket will be in UDP

server mode, otherwise it will be in UDP client mode.
② MCU reads data from CH395. CH395 directly sends the received data stream to MCU in the client

mode, and MCU can read all the data at a time or read only part of the data. In the server mode,
CH395 will add an 8-byte information table to the header of the data. MCU can get the source
information of the data packet according to the information table, and must read all the data at a
time.

Data packet length Port IP Data

2 Byte 2 Byte 4 Byte N Byte

③ MCU sends data, and CH395 directly sends data to the destination IP and port specified during
initialization in the client mode. In the server mode, CH395 can send data to any IP and port. MCU
sets the destination IP and port before sending.

8.3.5. Initialize Socket to TCP client mode
Initialization steps are as follows:
① Send the command CMD_SET_PROTO_TYPE_SN to set Socket to work in TCP mode;
② Send the command CMD_SET_IP_ADDR_SN to set the destination IP address;
③ Send the command CMD_SET_DES_PORT_SN to set the destination port;
④ Send the command CMD_SET_SOUR_PORT_SN to set the source port;
⑤ Send the command CMD_OPEN_SOCKET_SN to turn on Socket;
⑥ After delay for more than 2MS, send the command CMD_GET_CMD_STATUS to get the

execution status of CMD_OPEN_SOCKET_SN. If CH395_ERR_BUSY is returned, it will indicate
that CH395 is internally executing the command and needs to execute ⑥ again; If
CH395_ERR_SUCCESS is returned, it will indicate that the command is executed successfully; if
other values are returned, it will indicate the failure to turn on Socket;

⑦ Send the command CMD_TCP_CONNECT_SN to perform TCP connection;
⑧ After delay for more than 2MS, send the command CMD_GET_CMD_STATUS to get the

execution status of CMD_TCP_CONNECT_SN. If CH395_ERR_BUSY is returned, it will indicate
that CH395 is internally executing the command and needs to execute ⑧ again; If
CH395_ERR_SUCCESS is returned, it will indicate that the command is executed successfully.
Other values indicate the failure to execute the command. Returning CH395_ERR_SUCCESS only
indicates that the command is executed successfully and does not indicate a successful TCP
connection. If TCP connection is successful, CH395 will generate the interrupt
SINT_STAT_CONNECT. If the connection fails, CH395 will generate the interrupt
SINT_STAT_TIM_OUT. If it is necessary to connect again, execute again from ⑤.

http://wch.cn

CH395 Datasheet http://wch.cn

35

TCP message structure:
Destination

MAC
Source
MAC

Type IP header TCP
header

TCP data CRC32

6 Byte 6 Byte 2 Byte 20 Byte 20 Byte Max. 1460 Bytes 4 Byte

TCP provides a connection-oriented, reliable byte stream service.

CH395 generates SINT_STAT_CONNECT, indicating that TCP connection is established and data can be
sent and received. Data sending operation shall not be performed before the connection is not established.

After MCU writes several bytes of data stream to CH395, CH395 encapsulates the data stream in the TCP
data division for sending. The maximum length sent per packet in TCP mode is TCP MSS bytes. If the length
of the data stream written by MCU is more than TCP MSS bytes, CH395 will encapsulate the data stream
into several TCP packets for sending, and the interrupt SINT_STAT_SEND_OK will be generated after each
packet is successfully sent. The length of byte written by MCU each time shall not be more than the length
of the transmit buffer, and the next write data operation can only be performed after the interrupt
SINT_STAT_SENBUF_FREE is received. In TCP mode, the interrupt SINT_STAT_TIM_OUT will be
generated if the data transmission fails. CH395 will automatically turn off the Socket (in case
FUN_PARA_FLAG_SOCKET_CLOSE is 0, see 5.55).

When receiving TCP message, CH395 copies TCP data to the Socket receive buffer and generates
SINT_STAT_RECV interrupt. Upon receipt of this interrupt, MCU can send the command
CMD_GET_RECV_LEN_SN to get the length of the receive buffer data, and then send the command
CMD_READ_RECV_SN to read the data in the data buffer. MCU can read all the data at one time or only
read part of the data. The free space of the receive buffer is TCP window. After the MCU reads the data
each time, CH395 will check the free space of the receive buffer and inform the TCP server of the size of the
current window.

8.3.6. Initialize Socket to TCP server mode
Initialization steps are as follows:
① Send the command CMD_SET_PROTO_TYPE_SN to set Socket to work in TCP mode;
② Send the command CMD_SET_SOUR_PORT_SN to set the source port Sport;
③ Send the command CMD_OPEN_SOCKET_SN to turn on Socket;
④ After delay for more than 2MS, send the command CMD_GET_CMD_STATUS to get the

execution status of CMD_OPEN_SOCKET_SN. If CH395_ERR_BUSY is returned, it will indicate
that CH395 is internally executing the command and needs to execute ④ again; If
CH395_ERR_SUCCESS is returned, it will indicate that the command is executed successfully; if
other values are returned, it will indicate the failure to turn on Socket.

In TCP server mode, if the client is connected and always be in the monitoring state on the Socket, the
timeout interrupt will not be generated. If TCP connection is successful, CH395 will generate the interrupt
SINT_STAT_CONNECT. At this time, MCU can send the command CMD_GET_REMOT_IPP_SN to get
the IP address and port number of the client.

By default, the multi-connection function of the server is turned off. In TCP server mode, only one TCP
connection can be established for each Socket.

In case the multiple connection mode is enabled, TCP server can be connected to multiple TCP connections,
MCU shall set the source port of the Socket to be consistent with the source port of the server. If TCP server
detects the connection, CH395 will detect whether all current source ports of the Socket are consistent with
the current server, whether the protocol type is TCP and whether they are in OFF state. If found, CH395 will
immediately turn on this Socket, assign the connection to this Socket and notify MCU of this connection
event; if not found, CH395 will reset the connection. In this mode, the Socket of the server is only used for

http://wch.cn

CH395 Datasheet http://wch.cn

36

monitoring, and MCU needs to allocate other Sockets for the connection of the server. For example, Socket0
is set to the server mode, Socket1 and Socket2 are used for the connection of this server, and the steps are as
follows:

Socket0 executes ①-④;
⑤ Send the command CMD_SET_SOUR_PORT_SN to Socket1 to set the source port Sport;
⑥ Send the command CMD_SET_PROTO_TYPE_SN to Socket1 to set Socket to work in TCP mode;
⑦ Send the command CMD_SET_SOUR_PORT_SN to Socket2 to set the source port Sport;
⑧ Send the command CMD_SET_PROTO_TYPE_SN to Socket2 to set Socket to work in TCP mode;

For data structures and the process for sending and receiving data, refer to the TCP client mode.

8.3.7. DHCP
Before beginning the following steps, initialize CH395.
DHCP steps are as follows:
① Send the command CMD_DHCP_ENABLE, and start DHCP if the parameter is 1.
② Wait for CH395 to generate the interrupt GINT_STAT_DHCP;
③ After waiting for the interrupt GINT_STAT_DHCP, send the command

CMD_GET_DHCP_STATUS to get DHCP status. If the status code is 0, it will indicate success,
and MCU can send the command CMD_GET_IP_INF to get IP, MASK and other information. If
the status code is 1, the connection between CH395 and DHCP Server may fail, for example, DHCP
Server is not online. Although CH395 informs MCU of DHCP error by the interrupt, it will still try
again internally to find DHCP Server. MCU can send the command CMD_DHCP_ENABLE. Stop
DHCP if the parameter is 0.

8.3.8. About TCP MSS and Buffers
CH395 supports modification of TCP MSS. The default size of TCP MSS is 800. Generally speaking, if TCP
MSS is larger, the communication speed and efficiency will be higher. Some principles shall be followed
when TCP MSS and the receive buffer are modified.

① (Suggested) The length of the receive buffer shall not be less than 2 times of TCP MSS;
② (Necessary) The length of the receive buffer shall not be less than TCP MSS;
③ (Suggested) The length of the receive buffer shall not be more than 6 times of TCP MSS;
④ (Necessary) The size of the transmit buffer shall not be more than 8KB.

When modifying TCP MSS, try to be as large as possible. If it is too small, it may lead to the increase of
small packet data on Ethernet, affecting the communication efficiency.

http://wch.cn

	1. Overview
	2. Features
	3. Package
	4. Pins
	5. Commands
	5.1. CMD_GET_IC_VER
	5.2. CMD_SET_BAUDRATE
	5.3. CMD_ENTER_SLEEP
	5.4. CMD_RESET_ALL
	5.5. CMD_CHECK_EXIST
	5.6. CMD_SET_PHY
	5.7. CMD_SET_MAC_ADDR
	5.8. CMD_SET_IP_ADDR
	5.9. CMD_SET_GWIP_ADDR
	5.10. CMD_SET_MASK_ADDR
	5.11. CMD_SET_MAC_FILT
	5.12. CMD_GET_PHY_STATUS
	5.13. CMD_INIT_CH395
	5.14. CMD_GET_UNREACH_IPPORT
	5.15. CMD_GET_GLOB_INT_STATUS
	5.16. CMD_GET_GLOB_INT_STATUS_ALL
	5.17. CMD_SET_RETRAN_COUNT
	5.18. CMD_SET_RETRAN_PERIOD
	5.19. CMD_GET_CMD_STATUS
	5.20. CMD_GET_REMOT_IPP_SN
	5.21. CMD_CLEAR_RECV_BUF_SN
	5.22. CMD_GET_SOCKET_STATUS_SN
	5.23. CMD_GET_INT_STATUS_SN
	5.24. CMD_SET_IP_ADDR_SN
	5.25. CMD_SET_DES_PORT_SN
	5.26. CMD_SET_SOUR_PORT_SN
	5.27. CMD_SET_PROTO_TYPE_SN
	5.28. CMD_OPEN_SOCKET_SN
	5.29. CMD_TCP_LISTEN_SN
	5.30. CMD_TCP_CONNECT_SN
	5.31. CMD_TCP_DISNCONNECT_SN
	5.32. CMD_WRITE_SEND_BUF_SN
	5.33. CMD_GET_RECV_LEN_SN
	5.34. CMD_READ_RECV_BUF_SN
	5.35. CMD_CLOSE_SOCKET_SN
	5.36. CMD_SET_IPRAW_PRO_SN
	5.37. CMD_PING_ENABLE
	5.38. CMD_GET_MAC_ADDR
	5.39. CMD_DHCP_ENABLE
	5.40. CMD_GET_DHCP_STATUS
	5.41. CMD_GET_IP_INF
	5.42. CMD_SET_TCP_MSS
	5.43. CMD_SET_TTL
	5.44. CMD_SET_RECV_BUF
	5.45. CMD_SET_SEND_BUF
	5.46. CMD_EEPROM_ERASE
	5.47. CMD_EEPROM_WRITE
	5.48. CMD_EEPROM_READ
	5.49. CMD_READ_GPIO_REG
	5.50. CMD_WRITE_GPIO_REG
	5.51. CMD_SET_FUN_PARA
	5.52. CMD_SET_KEEP_LIVE_IDLE
	5.53. CMD_SET_KEEP_LIVE_INTVL
	5.54. CMD_SET_KEEP_LIVE_CNT
	5.55. CMD_SET_KEEP_LIVE_SN

	6. Functional Specification
	6.1 Communication Interfaces of MCU
	6.2. Parallel Interfaces
	6.3. SPI
	6.4. UART
	6.5. Other Hardware

	7. Parameters
	7.1. Absolute Maximum Value
	7.2. Electrical Parameters
	7.3. Timing Parameters
	7.4. Timing Parameters of Parallel Port
	7.5. SPI Timing Parameters

	8. Application
	8.1 Hardware Circuit Design
	8.2. Application Basis
	8.3. Application Reference Steps
	8.3.1. Initialize CH395 (necessary operation)
	8.3.2. Initialize Socket to MACRAW mode
	8.3.3. Initialize Socket to IPRAW mode
	8.3.4. Initialize Socket to UDP mode
	8.3.5. Initialize Socket to TCP client mode
	8.3.6. Initialize Socket to TCP server mode
	8.3.7. DHCP
	8.3.8. About TCP MSS and Buffers

