

Aluminum electrolytic capacitors

Large-size capacitors

Series/Type: B41607 Date: November 2012

© EPCOS AG 2012. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Large-size capacitors

Very high ripple current - 125 °C

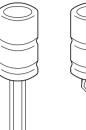
Long-life grade capacitors

Applications

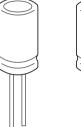
- High-reliability equipment in automotive power electronics
- Applications with highest ripple current load at high frequencies

Features

- Outstanding reliability and long useful life, up to 10000 h at 125 °C
- Very high ripple current capability optimized for high frequencies
- High vibration stability
- Shelf life up to 15 years at storage temperatures up to 40 °C. To ensure solderability, the capacitors should be built into the application within one year of delivery. After a total of two years' storage, the operating voltage must be applied for one hour to ensure the specified leakage current.
- RoHS-compatible


Construction

- Charge/discharge-proof, polar
- Aluminum case, fully insulated
- Up to 40 g vibration stability version with middle corrugation
- Snap-in solder version with pins to hold component in place on PC-board
- Minus pole not insulated from case
- Overload protection (safety vent)
- Without insulation sleeve upon request


Terminals

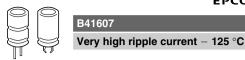
- Version with wired terminals, weldable and solderable
- Snap-in with 3 terminals, protection against polarity reversal

Page 2 of 15

CUS

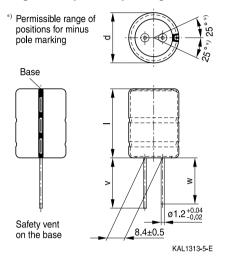
Very high ripple current - 125 $^\circ$ C

B41607


Specifications and characteristics in brief

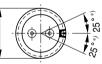
25 63 V DC			
1.15 · V _B			
900 4700 µ	F		
±20% ≙ M			
$I_{\text{leak}} \leq 0.006$	$i \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right) + 4 \mu A$	A	
15 nH			
	Requirements:		
> 10000 h	∆C/C	$\leq \pm 30\%$ of initial value	
> 30000 h	ESR	\leq 3 times initial specified limit ²⁾	
> 500000 h	I _{leak}	≤ initial specified limit	
	Post test requirement	s:	
5000 h	∆C/C	$\leq \pm 10\%$ of initial value	
	ESR	\leq 1.3 times initial specified limit ²⁾	
	I _{leak}	≤ initial specified limit	
To IEC 60068	3-2-6, test Fc:		
0	•	Standard vibration version without middle corrugation	
Frequency range 10 Hz 2 kHz, displacement amplitude max. 3 mm, acceleration max. 40 g,		0.75 mm, acceleration max. 10 g , duration 3 × 2 h. Capacitor mounted by its body	
which is rigidly clamped to the work surface.		which is rigidly clamped to the work surface.	
To IEC 60068-1: 55/125/56 (-55 °C/+ 125 °C/56 days damp heat test)			
Similar to CECC 30301-809 IEC 60384-4			
	$1.15 \cdot V_{R}$ 900 4700 µ ±20% \triangleq M I _{leak} \leq 0.006 15 nH > 10000 h > 30000 h > 50000 h 5000 h To IEC 60068 40 <i>g</i> vibration middle corrug Frequency rai displacement acceleration r duration 3 × 2 Capacitor mo which is rigidl surface. To IEC 60068 55/125/56 (-4) Similar to CEC	1.15 · V _R 900 4700 μF±20% ≙ MI _{leak} ≤ 0.006 μA · $\left(\frac{C_R}{\mu F}, \frac{V_R}{V}\right)$ + 4 μA15 nH> 10000 h△C/C> 30000 hESR> 500000 hI _{leak} Post test requirements5000 hΔC/CESRI _{leak} To IEC 60068-2-6, test Fc:40 g vibration stability version with middle corrugationFrequency range 10 Hz 2 kHz, displacement amplitude max. 3 mm, acceleration max. 40 g, duration 3 × 2 h.Capacitor mounted by its body which is rigidly clamped to the work surface.To IEC 60068-1:55/125/56 (-55 °C/+ 125 °C/56 days Similar to CECC 30301-809	

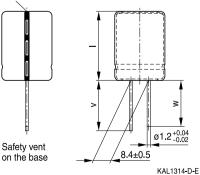
1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.


2) ESR_{max} at 100 Hz, 20 °C

Dimensional drawings

Large-size capacitor, up to 40 g vibration stability version with wired terminals

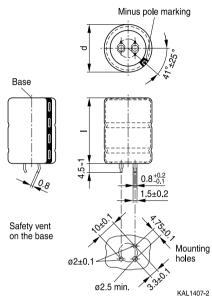



Dimensions and weights

Dimensions		Approx. weight	Packing
d +1	l ±2	weight	units
mm	mm	g	pcs.
22	40	21	56
25	40	28	56
25	50	35	56

Large-size capacitor, standard vibration version with wired terminals

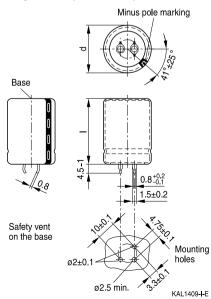
*) Permissible range of positions for minus pole marking


Dimensions and weights

Dimensions		Approx.	Packing
d +1	l ±2	Approx. weight	units
mm	mm	g	pcs.
22	40	21	56
25	40	28	56
25	50	35	56

Â	
EPCOS	
B41607	
Very high ripple current – 125 °C	

.


Large size capacitor, snap-in version high vibration stability

Dimensions, weights and packing units

Dimensions		Approx. weight	Packing
d +1	l ±2	weight	units
mm	mm	g	pcs.
22	40	21	160
25	40	28	130
25	50	35	130

Large size capacitor, snap-in version standard vibration stability

Dimensions, weights and packing units

Dimensions		Approx. weight	Packing
d +1	l ±2	weight	units
mm	mm	g	pcs.
22	40	21	160
25	40	28	130
25	50	35	130

Very high ripple current - 125 $^{\circ}$ C

Overview of available types

B41607

V _R (V DC)	25	40	55	63	
	Case dimensi	se dimensions d × I (mm)			
C _R (μF)					
900				22×40	
1200			22 × 40	25 imes 40	
1600		22×40	25 × 40	25 imes 50	
2200		25 × 40	25×50		
2700		25 × 50			
3000	22×40				
3600	25 imes 40				
4700	25×50				

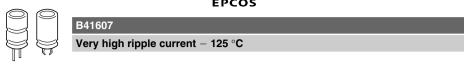
The capacitance and voltage ratings listed above are available in different cases upon request. Other voltage and capacitance ratings are also available upon request.

B41607 Very high ripple current – 125 °C

Technical data and ordering codes

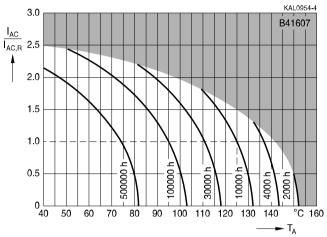
C _R	Case	ESR _{max}	ESR _{max}	ESR _{max}	I _{AC,max}	I _{AC.R}	Ordering code
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	10 kHz	10 kHz	(composition see
20 °C	d×l	20 °C	−40 °C	20 °C	125 °C	125 °C	below)
μF	mm	mΩ	mΩ	mΩ	А	А	
V _R = 25 V	DC						
3000	22×40	26	115	16	10.2	6.8	B41607A5308M00*
3600	25 imes 40	23	80	14	11.4	7.6	B41607A5368M00*
4700	25 imes 50	17	60	11	14.5	9.7	B41607A5478M00*
$V_{R} = 40 V$	DC						
1600	22×40	35	115	17	10.2	6.8	B41607A7168M00*
2200	25×40	27	80	14	11.5	7.7	B41607A7228M00*
2700	25 imes 50	21	60	11	14.5	9.7	B41607A7278M00*
V _R = 55 V	' DC						
1200	22×40	42	115	16	10.2	6.8	B41607A0128M00*
1600	25 imes 40	32	80	14	11.5	7.7	B41607A0168M00*
2200	25 imes 50	24	60	11	14.7	9.8	B41607A0228M00*
$V_{R} = 63 \text{ V DC}$							
900	22×40	50	115	17	10.2	6.8	B41607A8907M00*
1200	25 imes 40	38	90	14	11.4	7.6	B41607A8128M00*
1600	25 imes 50	28	65	11	14.5	9.7	B41607A8168M00*

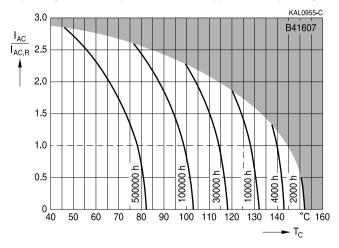
Composition of ordering code


* = Terminal style

2 = for snap-in version with 3 terminals

3 = for snap-in version with 3 terminals and middle corrugation


- 8 = for version with wired terminals
- 9 = for version with wired terminals and middle corrugation

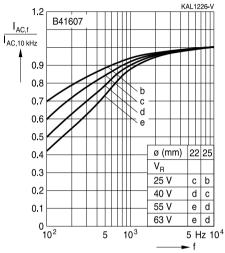

Useful life¹⁾

depending on ambient temperature T_A under ripple current operating conditions at V_B

Useful life¹⁾

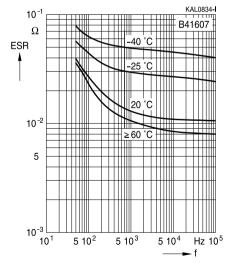
depending on case temperature T_{c} under ripple current operating conditions at V_{R}

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

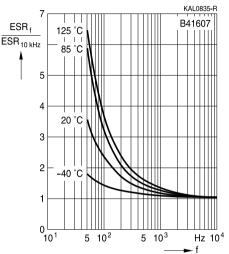


Very high ripple current – 125 °C

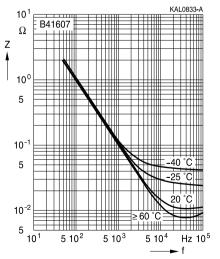
B41607



Frequency factor of permissible ripple current I_{AC} versus frequency f


Equivalent series resistance ESR versus frequency f

Typical behavior for 1600 µF/55 V


Frequency characteristics of ESR

Typical behavior

Impedance Z versus frequency f

Typical behavior for 1600 µF/55 V

Very high ripple current – 125 °C

Cautions and warnings

B41607

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. However, the amount of dangerous materials used in our products is limited to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request. MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

B41607 Very high ripple current – 125 °C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw- terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents Upper category temperature	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors. Do not exceed the upper category temperature.	11.6 "Cleaning agents" 7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, such as fire or electricity.	8.1 "Passive flammability"

B41607

Very high ripple current - 125 $^\circ$ C

Topic Active flammability	Safety information Avoid overload of the capacitors.	Reference chapter "General technical information" 8.2 "Active flammability"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Storage	Do not store capacitors at high temperatures or high humidity. Capacitors should be stored at +5 to +35 °C and a relative humidity of \leq 75%.	7.3 Storage conditions
		Reference chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals - accessories"

B41607 Very high ripple current – 125 °C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C _R	Rated capacitance	Nennkapazität
Cs	Series capacitance	Serienkapazität
C _{S,T}	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C _f	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d _{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR_{T}	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
I	Current	Strom
I _{AC}	Alternating current (ripple current)	Wechselstrom
I _{AC,rms}	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
I _{AC.f}	Ripple current at frequency f	Wechselstrom bei Frequenz f
I _{AC,max}	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
I _{AC,R}	Rated ripple current	Nennwechselstrom
I _{AC,R} (B)	Rated ripple current for base cooling	Nennwechselstromstrom für Bodenkühlung
I _{leak}	Leakage current	Reststrom
I _{leak,op}	Operating leakage current	Betriebsreststrom
I	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)
R	Resistance	Widerstand
R _{ins}	Insulation resistance	Isolationswiderstand
R _{symm}	Balancing resistance	Symmetrierwiderstand
Т	Temperature	Temperatur
ΔT	Temperature difference	Temperaturdifferenz
T _A	Ambient temperature	Umgebungstemperatur
T _c	Case temperature	Gehäusetemperatur
Тв	Capacitor base temperature	Temperatur des Becherbodens
t	Time	Zeit
Δt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

B416<u>07</u>

Very high ripple current - 125 $^\circ$ C

Symbol	English	German
V	Voltage	Spannung
V _F	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V _R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
Vs	Surge voltage	Spitzenspannung
X _c	Capacitive reactance	Kapazitiver Blindwiderstand
X_{L}	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Z _T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
tan δ	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ε ₀	Absolute permittivity	Elektrische Feldkonstante
ε _r	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.