QUADRUPLE 2-INPUT EXCULSIVE OR GATES

1. Description

The 74HC86 is identical in pinout to the LS86. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

2. Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices

3. Applications

- General Purpose Logic
- Wide array of products such as:
 - PCs, Networking, Notebooks, Netbooks

4. Ordering Information

Table 1. Ordering Information

- In Compliance with JEDEC Standard No. 7A Requirements
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 56 FETs or 14 Equivalent
 Gates
- These are Pb-Free Devices
 - Computer Peripherals, Hard Drives, CD/DVD ROM
 - TV, DVD, DVR, Set Top Box

Type Number	Package Type	Packing
74HC86D	SOP-14	Reel
74HC86PW	TSSOP-14	Reel

5. Pin Assignments

6. Descriptions

Pin Number	Pin Name	Function
1	1A	Data Input
2	1B	Data Input
3	1Y	Data Output
4	2A	Data Input
5	2B	Data Input
6	2Y	Data Output
7	GND	Ground
8	3Y	Data Output
9	3A	Data Input
10	3B	Data Input
11	4Y	Data Output
12	4A	Data Input
13	4B	Data Input
14	^v CC	Supply Voltage

7. Logic Diagram

8. Function Table

Inputs		Output		
Α	В	Y		
L	L	L		
L	н	Н		
Н	L	н		
Н	Н	L		

9. Absolute Maximum Ratings

(@ T_A = +25°C, unless otherwise specified.)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD CDM	Charged Device Model ESD Protection	1	KV
ESD MM	Machine Model ESD Protection	200	V
V _{cc}	Supply Voltage Range	-0.5 to +7.0	V
VI	Input Voltage Range	-0.5 to +7.0	V
I _{IK}	Input Clamp Current $V_1 < -0.5V$ or $V_i > V_{CC} + 0.5V$	±20	mA
loк	Output Clamp Current $V_0 < -0.5V$ or $V_0 > V_{CC} + 0.5V$	±20	mA
lo	Continuous output current $-0.5V < V_0 V_{CC} + 0.5V$	+/- 25	mA
I _{CC}	Continuous Current Through Vcc	50	mA
I _{GND}	Continuous Current Through GND	-50	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _{TOT}	Total Power Dissipation	500	mW

Notes:

Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

Input Voltage cannot exceed V_{CC} to the extent the Maximum clamp current is exceeded.

10. Recommended Operating Conditions

(@T _A = +25°C	, unless otherwise specified.)
--------------------------	--------------------------------

Symbol	Parameter	Conditions	Min	Max	Unit
Vcc	Supply Voltage		2.0	6.0	V
VI	Input Voltage		0	VCC	V
Vo	Output Voltage		0	VCC	V
		V _{CC} = 2.0V		625	ns/V
Δt/ΔV	Input Transition Rise or Fall Rate	V _{CC} = 4.5V		140	
		V _{CC} = 6.0V		85	
T _A	Operating Free-Air Temperature		-40	+125	°C

Note: Unused inputs should be held at $V_{\text{CC}}\,\text{or}$ Ground.

11. Electrical Characteristics

(@T_A= +25°C, unless otherwise specified.)

Cumhal	Parameter	Test Conditions	VCC	TA = -40°C to +85°C		TA = -40°C to +125°C		Unit
Symbol			VCC	Min	Max	Min	Max	Unit
			2.0V	1.5		1.5		
VIH	High-level Input Voltage		4.5V	3.15		3.15		V
			6.0V	4.2		4.2		
			2.0V		0.5		0.5	
VIL	Low-level input voltage		4.5V		1.35		1.35	V
			6.0V		1.8		1.8	
		I _{OH} = -20µА	2.0V	1.9		1.9		
	High-level Output Voltage	I _{OH} = -20µА	4.5V	4.4		4.4		V
V _{OH}		I _{OH} = -20µА	6.0V	5.9		5.9		
		I _{OH} = -4.0mA	4.5V	3.84		3.7		
		I _{OH} = -5.2mA	6.0V	5.34		5.2		
		Ι _{ΟL} = 20μΑ	2.0V		0.1		0.1	
		Ι _{ΟL} = 20μΑ	4.5V		0.1		0.1	
V _{OL}	Low-level Output Voltage	Ι _{ΟL} = 20μΑ	6.0V		0.1		0.1	V
		I _{OL} = 4mA	4.5V		0.33		0.44	
		I _{OL} = 5.2mA	6.0V		0.33		0.44	
h	Input Current	V _I =GND to 5.5V	6.0V		± 1		± 1	μA
	Supply Current	$V_1 = GND \text{ or } V_{CC},$	6.01/		20		40	
1CC		I _O = 0	0.00		20		40	μA

12. Switching Characteristics

Symbol	Devementer	Test Conditions	v	T _A = +25°C			-40°C to +85°C	-40°C to +125°C	llnit
	Parameter		VCC	Min	Тур.	Мах	Мах	Мах	Unit
Propagation	<u></u>	2.0V	—	25	90	115	135		
	Delay A_N to Y_N $C_L = 50 pF$	Figure 1 $C_{1} = 50 \text{ pF}$	4.5V	—	9	18	23	27	ns
		CL - 30pr	6.0V	—	7	15	20	23	
t _t Transition time	Figure 4	2.0V	—	19	75	95	110		
	Transition time		4.5V	—	7	15	19	22	ns
		CL - SUPF	6.0V	_	6	13	16	19	

13. Operating Characteristics

(@T_A= +25°C, unless otherwise specified.)

Paramotor		Tast Conditions	Vcc = 6V	Unit
raiai	netei	Тур		
C_{pd}	Power Dissipation Capacitance per Gate	f = 1MHz	25	pF
Cı	Input Capacitance	$V_I = V_{CC} - or GND$	4	pF

14. Parameter Measurement Information

N ₂ -	Inpu	uts	Mar	<u>^</u>	
Vcc	VI	t _r /t _f	VМ	UL UL	
2.0V to 6.0V	V _{cc}	6ns	V _{cc} /2	15pF, 50pF	

Fig. 1. Load Circuit and Voltage Waveforms

Notes:

Includes test lead and test apparatus capacitance.

All pulses are supplied at pulse repetition rate \leq 1 MHz.

Inputs are measured separately one transition per measurement.

 t_{PLH} and t_{PHL} are the same as t_{PD} .

15. Package outlines

16. Disclaimers

Limited warranty and liability

Information in this document is believed to be accurate and reliable. However, Fulihao does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Suitability for use

Fulihao products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable Fulihao product documentation.

Right to make changes

Fulihao reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. Fulihao takes no responsibility for the content in this document if provided by an information source outside of Fulihao. This document supersedes and replaces all information supplied prior to the publication hereof.