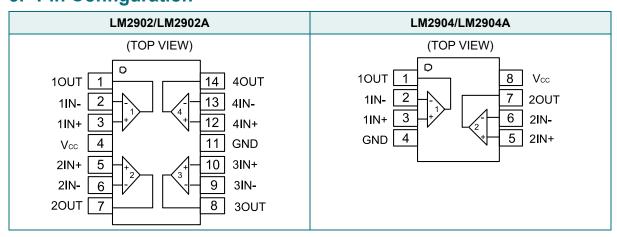


Dual And Quad Operational Amplifiers

1. Description

The LM2902/LM2904 series amplifiers consist of four and two independent high-gain operational amplifiers with very low input offset voltage specification. They have been designed to operate from a single power supply over a wide range of voltages; however operation from split power supplies is also possible. They offer low power supply current independent of the magnitude of the power supply voltage.


The LM2902/LM2904 series are characterized for operation from -40°C to +125°C and the dual devices are available in SOIC-8, MSOP-8, TSSOP-8 and the quad devices available in SOIC-14 and TSSOP-14 with industry standard pin-outs. Both use green mold compound as standard.

2. Features

- Wide Power Supply Voltage Range:
 - Single Supply: 3V to 36V
 - Dual Supplies: ±1.5V to ±18V
- Very Low Supply Current Drain

- LM2904 500μA Independent of Supply
 Voltage
- LM2902 700µA Independent of Supply
 Voltage
- Low Input Bias Current: 20nA
- Low Input Offset Voltage:
 - A Version: 1mV Typ
 - Non-A Version: 2mV Typ
- Large DC Voltage Gain: 100dB
- WideBandwidth (Unity Gain): 700kHz
 (Temperature Compensated)
- Internally Compensated with Unity Gain
- Input Common-Mode Voltage Range Includes
 Ground
- Differential Input Voltage Range Equal to the Power Supply Voltage
- Large Output Voltage Swing: 0V to Vcc -1.5V
- SOIC-8, MSOP-8, TSSOP-8 (Duals) and SOIC-14, TSSOP-14 (Quads) Packages Available

3. Pin Configuration

© Shenzhen Fulihao Science & Technology Co., Ltd.

Rev. 1.0 — December 2022

4. Pin Description

LM2902, LM2902A	LM2902, LM2902A						
Pin Name	Pin Number	Function					
10UT	1	Channel 1 Output					
1IN-	2	Channel 1 Inverting Input					
1IN+	3	Channel 1 Non-Inverting Input					
Vcc	4	Chip Supply Voltage					
2IN+	5	Channel 2 Non-Inverting Input					
2IN-	6	Channel 2 Inverting Input					
2OUT	7	Channel 2 Output					
3OUT	8	Channel 3 Output					
3IN-	9	Channel 3 Inverting Input					
3IN+	10	Channel 3 Non-Inverting Input					
GND	11	Ground					
4IN+	12	Channel 4 Non-Inverting Input					
4IN-	13	Channel 4 Inverting Input					
4OUT	14	Channel 4 Output					
LM2904, LM2904A							
10UT	1	Channel 1 Output					
1IN-	2	Channel 1 Inverting Input					
1IN+	3	Channel 1 Non-Inverting Input					
GND	4	Ground					
2IN+	5	Channel 2 Non-Inverting Input					
2IN-	6	Channel 2 Inverting Input					
2OUT	7	Channel 2 Output					
Vcc	8	Chip Supply Voltage					

5. Ordering Information

DEVICE	Package Type	Packing	Packing Qty
LM2902M	SOIC-14	Tape & Reel	
LM2902AM	SOIC-14	Tape & Reel	
LM2902MT	TSSOP-14	Tape & Reel	
LM2902AMT	TSSOP-14	Tape & Reel	
LM2904M	SOIC-8	Tape & Reel	
LM2904AM	SOIC-8	Tape & Reel	
LM2904MT	TSSOP-8	Tape & Reel	
LM2904AMT	TSSOP-8	Tape & Reel	
LM2904MM	MSOP-8	Tape & Reel	
LM2904AMM	MSOP-8	Tape & Reel	

Note: If the physical information is inconsistent with the ordering information, please refer to the actual product.

© Shenzhen Fulihao Science & Technology Co., Ltd.

Rev. 1.0 — December 2022

www.fulihao.com

6. Absolute Maximum Ratings

(Note 4) (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter		Rating	Unit
Vcc	Supply Voltage		±18 or 36	V
V _{ID}	Differential Input Voltage		36	V
VIN	Input Voltage		-0.3 to +36	V
		SOIC-8	TBD	
		MSOP-8	TBD	
θ_{JA}	Package Thermal Impedance (Note 5)	TSSOP-8	TBD	°C/W
		SOIC-14	TBD	
		TSSOP-14	TBD	
Ө ЈС Р		SOIC-8	TBD	°C/W
		MSOP-8	TBD	
	Package Thermal Impedance (Note 6)	TSSOP-8	TBD	
		SOIC-14	TBD	
VIN Inp θ JA Pac σ Out ΤΑ Ορσ Τσ Sto ESD		TSSOP-14	TBD	
_	Output Short-Circuit to GND (One Amplifier) (Note 7)	V _{CC} ≤ 15V and T _A = +25°C	Continuous	_
T _A	Operating Temperature Range		-40 to +125	°C
TJ	Operating Junction Temperature		+150	°C
Tst	Storage Temperature Range		-65 to +150	°C
θ _{JC} F - C T _A C T _{ST} S ESD	Human Body Mode ESD Protection (Note 8)	300	.,	
	Machine Mode ESD Protection	150	V	

Notes:

- 4. Stresses beyond those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.
- 5. Maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(MAX)} T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 6. Maximum power dissipation is a function of $T_{J(max)}$, θ_{JC} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of +150°C can affect reliability.
- 7. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- 8. Human body model, $1.5k\Omega$ in series with 100pF.

7. Electrical Characteristics

(Notes 12 & 13) (@ V_{CC} = +5.0V, T_A = +25°C, unless otherwise specified.)

LM2902, LM2902A

Paramet	ter		Conditions		T _A	Min	Тур	Max	Unit
			V _{IC} = V _{CMR} Min,	Nas A Davida	T _A =+25°C	_	2	7	
	Input Offset Voltag	. 14	V _O = 1.4V,	Non-A Device	Full Range	_	_	10	1 ,
V_{10}	Input Offset vo	oitage	V _{CC} = 5V to Max,	A Coeffice Described	TA=+25°C	_	1	2	mV
			$R_S = 0\Omega$	A-Suffix Device	Full Range	_	_	4	
ΔV _{IO} /ΔΤ	Input Offset Vo		$R_S = 0\Omega$			_	7	_	μV/°C
Ів	Input Bias Cur	rent	I _{IN+} or I _{IN} - with OL	JT in Linear	T _A =+25°C	_	-20	- 200	nA
.5	mpat Blas Gal		Range, V _{CMR} = 0\	/ (Note 9)	Full Range	_	_	- 500	
lio	Input Offset Co	ırrent	t $I_{\text{IN+}}$ - $I_{\text{IN-}}$, V_{CM} = 0V T_{A} = +25°C $-$ 2 Full Range $ -$		2	50	nA		
110	Input Offset Current		1114+ - 1114-, V CIVI — O		Full Range	_	_	150	11/1
ΔΙιο/ΔΤ	Input Offset Current Temperature Drift		_		Full Range	_	10	_	pA/°C
	Input Common-Mode Voltage Range		V _{CC} = 30V (Note 10)		T _A =+25°C	0 to Vcc -1.5	_	_	- V
V_{CMR}					Full Range	0 to Vcc -2.0	_	_	
laa	Supply Current		Vo = 0.5Vcc, No Load	V _{CC} = 30V	Full Range	_	1.0	3.0	mΛ
Icc	(Four Amplifie	rs)	V _O = 0.5V _{CC} , No Load	Vcc = 5V	Full Range	_	0.7	1.2	mA
۸	Valtage Cain		V _{CC} = 15V, V _{OUT} =	= 1V to 11V,	T _A =+25°C	25	100	_	V/mV
Av	Voltage Gain		$R_L \ge 2k\Omega$		Full Range	15	_	_	V/IIIV
CMRR	Common Mod Rejection Ratio		DC, V _{CMR} = 0V to	Vcc-1.5V	T _A =+25°C	60	70	_	dB
PSRR	Power Supply Rejection Ration		V _{CC} = 5V to 30V		T _A =+25°C	70	100	_	dB
_	Amplifier to Amplifier Coup	olina	f = 1kHz to 20kHz (Input Referred) (f = 1kHz to 20kHz		_	-120	_	dB
		9	$V_{IN}^{-} = 1V, V_{IN}^{+} = 0$						
		Sink	V _{CC} = 15V, V _O = 20	,	T _A =+25°C	12	50	-	μΑ
Isink	Output		$V_{IN^-} = 1V, V_{IN^+} = 0V,$		T _A =+25°C	10	20	_	
	Current		Vcc= 15V, Vo = 1	5V	Full Range	5	_	_	
		C	$V_{IN^{-}} = 1V, V_{IN^{+}} = 0$	V,	T _A =+25°C	-20	-40	-60	mA
ISOURCE		Source	V _{CC} = 15V, V _O = 0	V	Full Range	-10	_	_	1

Amplifiers

Isc	Short-Circuit to Ground	Vcc = 5V, GND = -5V, Vo = 0V		T _A =+25°C	_	±40	±60	mA
V	High-Level Output	R _L = 10kΩ		T _A =+25°C	_	V _{CC} -	_	V
Vон	Voltage Swing	V _{CC} = 30V	$R_L = 2k\Omega$	Full Range	26	_	_	V
			R _L ≥ 10kΩ		27	28	_	
V _{OL}	Low-Level Output Voltage Swing	$R_L \leq 10k\Omega$		Full Range	_	5	20	mV

LM2904, LM2904A

Parameter		Conditions		TA	Min	Тур	Max	Unit
		V _{IC} = V _{CMR} Min,	Non A Daviso	T _A =+25°C	_	2	7	
		Vo = 1.4V,	Non-A Device	Full Range	_	_	10	.,
Vio	Input Offset Voltage	V _{CC} = 5V to Max		T _A =+25°C	_	1	2	mV
		$R_S = 0\Omega$	A-Suffix Device	Full Range	_	_	4	
ΔV _{IO} /ΔΤ	Input Offset Voltage Temperature Drift	$R_S = 0\Omega$		Full Range	_	7	_	μV/°C
lo.	Input Rice Current	I _{IN+} or I _{IN} - with OUT ir	n Linear Range,	T _A =+25°C	_	-20	- 250	nA
I _B Input Bias Current	Imput bias Current	V _{CMR} = 0V (Note 9)		Full Range	_	_	- 500	IIA
I _{IO}	Input Offset Current	July - July Voy = 0V	_{IN+} - I _{IN-} , V _{CM} = 0V		_	2	50	nA
IIO	input Onset Current	IIN+ - IIN-, VCM - UV		Full Range	_	_	150	шА
ΔΙιο/ΔΤ	Input Offset Current Temperature Drift	_		Full Range	_	10	_	pA/°C
		V 00V (N 1 40)		T .05°O	0 to			
.,	Input Common-Mode			T _A =+25°C	_		V	
Vcmr	Voltage Range	V _{CC} = 30V (Note 10)		Full Range	0 to V _{CC} -2.0	_	_	
1	Supply Current	V _O = 0.5V _{CC} , No Load	V _{CC} = 30V	Full Range	_	0.7	2.0	m Λ
Icc	(Two Amplifiers)	$V_O = 0.5V_{CC}$, No Load	V _{CC} = 5V	Full Range	_	0.5	1.2	mA
۸	Valtaga Cain	V _{CC} = 15V, V _{OUT} = 1V	' to 11V,	T _A =+25°C	25	100	_	\
A _V	Voltage Gain	R _L ≥ 2kΩ		Full Range	15	_	_	V/mV
CMRR	Common Mode Rejection Ratio	DC, $V_{CMR} = 0V$ to V_{CC} -1.5V		T _A =+25°C	60	70	_	dB
PSRR	Power Supply Rejection Ratio	V _{CC} = 5V to 30V	V _{CC} = 5V to 30V		70	100	_	dB
_	Amplifier to Amplifier Coupling	f = 1kHz to 20kHz (N	ote 11)	T _A =+25°C	_	120	_	dB

			$V_{IN}^- = 1V$, $V_{IN}^+ = 0V$, $V_{CC} = 15V$, $V_O = 200 \text{mV}$		T _A =+25°C	12	50	_	μА
Isink	Output	Sink	$V_{IN^{-}} = 1V, V_{IN^{+}} = 0V,$		T _A =+25°C	10	20	_	
	Current	Current	V _{CC} = 15V, V _O = 15V		Full Range	5	_	_] m ^
1	0	$V_{IN^{-}} = 1V, V_{IN^{+}} = 0V,$	$V_{IN^{-}} = 1V, V_{IN^{+}} = 0V,$		-20	-40	-60	mA	
Isource		Source	$V_{CC} = 15V, V_{O} = 0V$		Full Range	-10	_	_	
Isc	Short-Circuit Ground	to	Vcc = 5V, GND = -5V	/ _{CC} = 5V, GND = -5V, V _O = 0V		_	±40	±60	mA
	High Lovel O	u ito i it	$R_L = 10k\Omega$		T _A =+25°C	Vcc-1.5	_	_	
Vон	High-Level Output Voltage Swing		V _{CC} = 30V	$R_L = 2k\Omega$	F!! D	26	_	_	V
			VCC - 30 V	R _L ≥ 10kΩ	Full Range	27	28	_	
V _{OL}	Low-Lever Output Voltage Swing		$R_L \leq 10k\Omega$		Full Range	_	5	20	mV

8. AC Electrical Characteristics

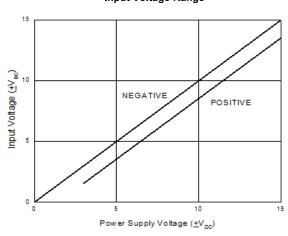
(Notes 12 & 13) (@ V_{CC} = ±15.0V, T_A = +25°C, unless otherwise specified.)

LM2902, LM2902A

Parameter		Conditions	Тур	Unit
SR	Slew Rate at Unity Gain	$R_L = 1M\Omega$, $C_L = 30pF$, $V_I = \pm 10V$	0.3	V/µs
B1	Unity Gain Bandwidth	$R_L = 1M\Omega$, $C_L = 20pF$	0.7	MHz
Vn	Equivalent Input Noise Voltage	Rs = 100Ω, VI = 0V, f = 1kHz	40	nV/√Hz

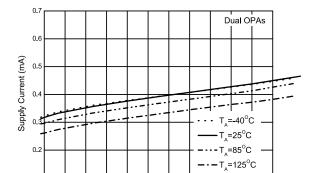
LM2904, LM2904A

Parameter		Conditions	Тур	Unit
SR	Slew Rate at Unity Gain	$R_L = 1M\Omega$, $C_L = 30pF$, $V_I = \pm 10V$	0.3	V/µs
B1	Unity Gain Bandwidth	$R_L = 1M\Omega$, $C_L = 20pF$	0.7	MHz
Vn	Equivalent Input Noise Voltage	$R_S = 100\Omega$, $V_I = 0V$, $f = 1kHz$	40	nV/√Hz


Notes:

- 9. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- 10.The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (@ $+25^{\circ}$ C). The upper end of the common-mode voltage range is V_{CC} -1.5V (@ $+25^{\circ}$ C), but either or both inputs can go to +36V without damage, independent of the magnitude of V_{CC} .
- 11. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
- 12. Typical values are all at $T_A = +25$ °C conditions and represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
- 13. All limits are guaranteed by testing or statistical analysis. Limits over the full temperature are guaranteed by design, but not tested in production.

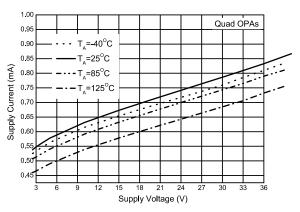
9. Typical Characteristics


Input Voltage Range

16 Input Current (nA) 10

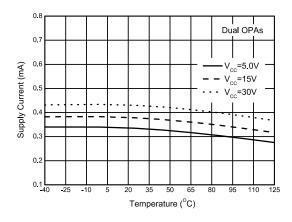
Input Current

Supply Current vs. Supply Voltage (LM2904/LM2904A)

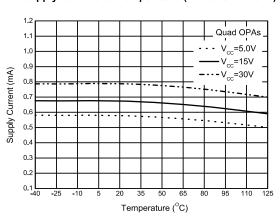


Supply Current vs. Supply Voltage (LM2902/LM2902A)

35 Temperature (°C)

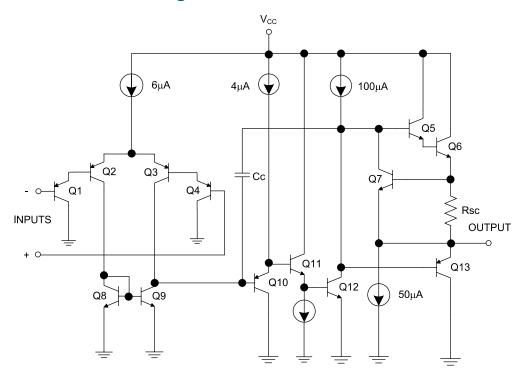

-10

50 65

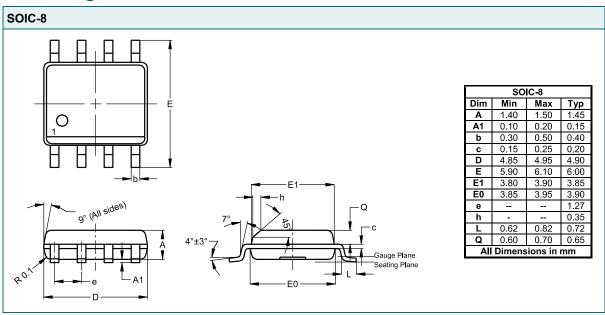


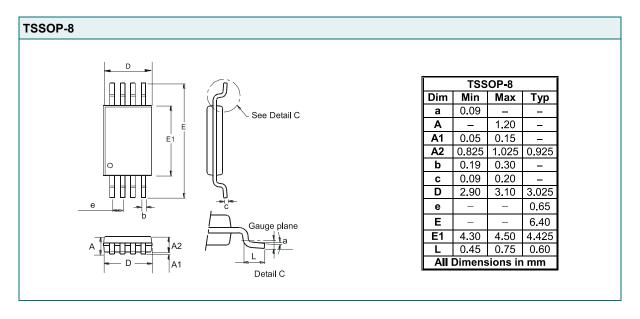
Supply Current vs. Temperature (LM2904/LM2904A)

Supply Voltage (V)

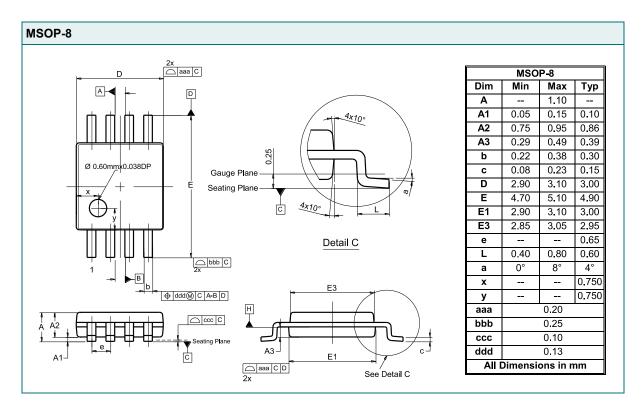


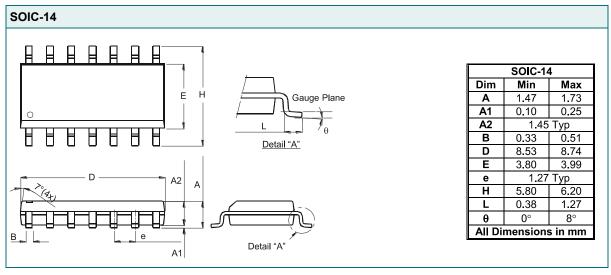
Supply Current vs. Temperature (LM2902/LM2902A)

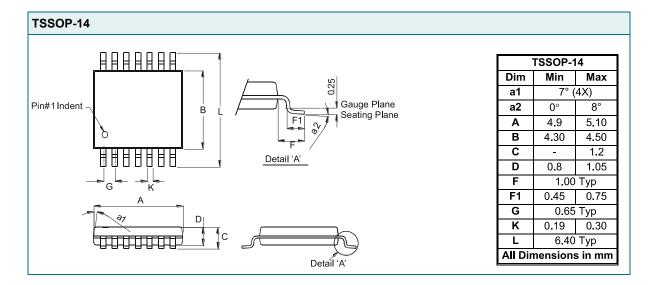

10. Functional Block Diagram



Each Amplifier


11. Package Outlines





Amplifiers

12. Disclaimers

Limited warranty and liability

Information in this document is believed to be accurate and reliable. However, Fulihao does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Suitability for use

Fulihao products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable Fulihao product documentation.

Right to make changes

Fulihao reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. Fulihao takes no responsibility for the content in this document if provided by an information source outside of Fulihao. This document supersedes and replaces all information supplied prior to the publication hereof.