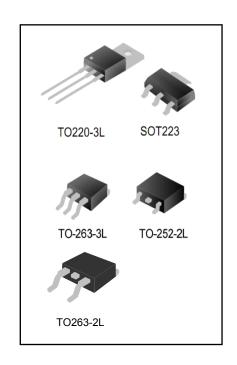


三端可调节输出正电压稳压器

描述

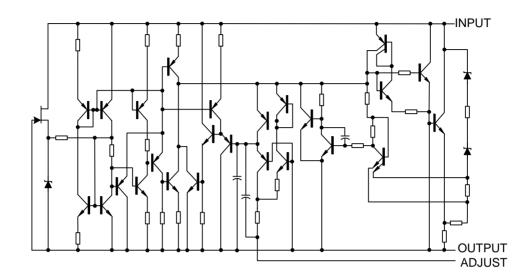

LM317是可调节 3 端正电压稳压器,在输出电压范围为 1.2V 到 37V 时最大能够提供超过 1.5A 的电流。此稳压器非常易于使用,只需要两个外部电阻来设置输出电压。此外还使用内部限流、热关断和安全工作区补偿使之基本能防止烧断保险丝。

主要特点

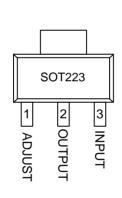
- ◆ 可调整输出电压低到 1.2V。
- ◆ 最大 1.5A 输出电流。
- ◆ 输出短路保护。
- 过流、过热保护。
- 调整管安全工作区保护。
- ◆ 标准三端晶体管封装。

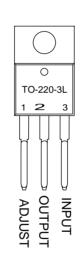
应用

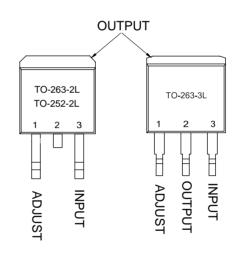
- ◆ 局部稳压
- 卡上稳压
- ◆ 精密稳流器
- ◆ 输出稳压器



产品订购信息


产品名称	封装 打印名称 包装		包装数量	输出电流	
LM317T	TO220-3L	LM317	管装	1000 只/盒	
LM317AT	TO220-3L	LM317A	管装	1000 只/盒	
LM317S	TO263-3L	LM317	编带	500 只/盘	1.5A
LM317S2	TO263-2L	LM317	编带	500 只/盘	
LM317AS	TO263-3L	LM317A	编带	500 只/盘	
LM317EMP	SOT223	N01A	编带	2000 只/盘	
LM317AEMP	SOT223	N07A	编带	2000 只/盘	1.0A
LM317ADT	TO252-2L	LM317A	编带	2000 只/盘	
LM317DT	TO252-2L	LM317	编带	2000 只/盘	0.5A




内部框图

管脚排列图

管脚描述

管脚号	管脚名称	I/O	功能说明
1	ADJUST	Р	调节
2	V_{OUT}		输出
3	Vin	0	输入电源

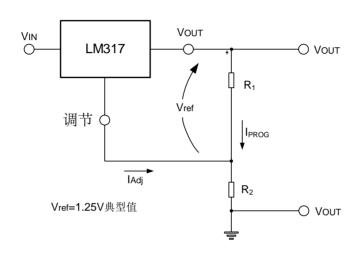
极限参数

参数	符号	参 数 范 围	单位
输入输出压差	VI-VO	40	V
输出电流	Іоит	1.5	Α
储存温度	Ts	-65 ~ +150	°C
工作温度	T _A	LM317: 0~70	- °C
上[F恤/又		LM317A: -40~85	

注:超过了极限参数可能造成永久性伤害,长时间暴露于极限条件会影响设备的可靠性。

电气参数(如无特殊说明 V_I=Vo+5V, T_A =25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
			1.238	1.250	1.262	V
参考电压		$3V \leqslant (VIN - VOUT) \leqslant 40V$, $10 \text{ mA} \leqslant IOUT \leqslant IMAX, P \leqslant PMAX}$	1.20	1.250	1.3	V
电源线性调整	Regline	01/- 0/10 1/01/10 - 401/		0.01	0.04	%/V
电源线任调整		$3V \leqslant (VIN - VOUT) \leqslant 40V$		0.01	0.07	%/V
	Regload			0.1	0.5	%
负载调制率		10 mA \leq IOUT \leq IMAX,		0.3	1.5	%
热调整率	Reftherm			0.04	0.07	%/W
调节管电流	lAdj			50	100	μΑ
调节管电流变化	∆ lAdj	$3V \leqslant (VIN - VOUT) \leqslant 40V$, $10 \text{ mA} \leqslant IOUT \leqslant IMAX$		0.2	5	μΑ
温度稳定性	TS	TMIN ≤TJ ≤ TMAX			1	%
最小负载电流以保持调制率	ILmin	(VIN - VOUT) = 40V		3.5	10	mA
最大输出电流	Imax	(VIN - VOUT) ≤15V,T 封装	1	1.95		Α
		(VIN - VOUT) = 40V,T 封装		0.4		Α
均方根噪声	N	10 Hz ≤ f ≤10 kHz		0.003		%
纹波抑制比	RR	VOUT=10V, f=120 Hz,CADJ=0 μF		65		dB
		VOUT=10V, f =12 Hz,CADJ=10 μF	66	80		dB
长期稳定性	S					



功能描述

基本工作电路

LM317 是三端浮动稳压器,工作时,LM317 建立并保持输出与调节端之间 1.25V 的标称参考电压 Vref 这一参考电压由 R1 见下图转换成编程电流 I_{PROG},该恒定电流经 R2 到地稳压输出电压由下式给出:

$$Vout = Vref(1 + \frac{R_2}{R_1}) + Iadj \times R_2$$

基本电路设置

因为调节端的电流 I_{Adj} 在式中代表误差项,所以 LM317 设计成控制 I_{Adj} 小于 100uA 并使之保持恒定。为达到这一点,所有静态工作电流都返回到输出端。这样就需要最小负载电流,如果负载电流小于最小值,输出电压会上升。

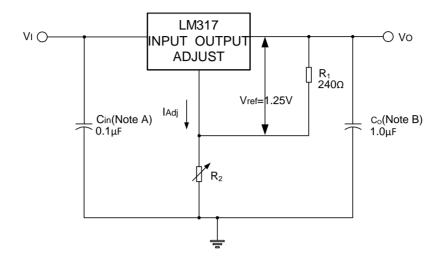
LM317 是浮动稳压器,只有电路两端电压差对的性能是中医的,工作对地呈 电压就成为可能。

负载调制率

LM317 能提供良好的负载调制率,但为实现最优性能需要注意几点:编程电阻 R1 应尽可能连接在与稳压器靠近处,已使与参考电压有效串联的线路压降最小,避免调整率变差。R2 的接地端可以回到靠近负载接地端处,以提供远程接地取样并改进提 负载调整率。

外部电容

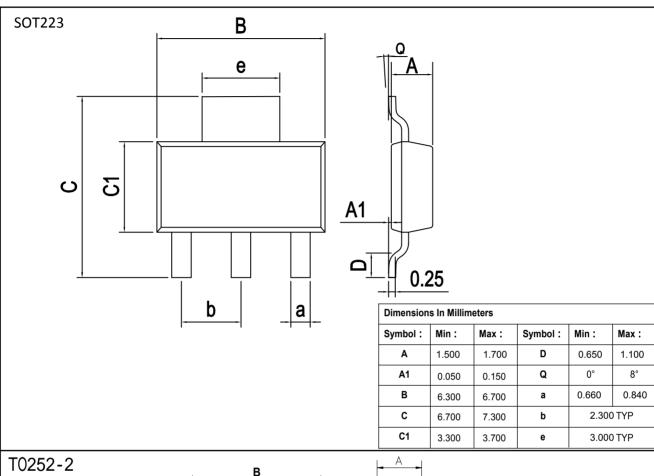
建议使用 0.1uF 片电容或 1.0uF 电容作为输入旁路电容(Cin)以减小对输入电源阻抗的敏感性。可通过把调节端旁路到地来提 纹波抑制。该电容 C_{Adj} 防止输出电压增大时纹波被放大,在 10V 应用中,10uF 电容能在 120Hz 处改进纹波抑制约 15dB。

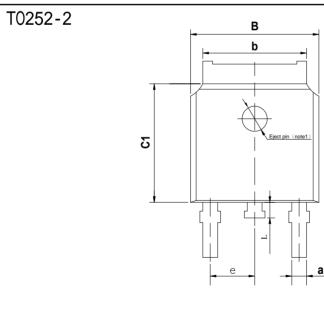

尽管 LM317 在无输出电容时时稳定的,但像其他反 电路一样,某些值的外部电容会引起过分振荡,1.0uF 电容和 25uF 铝电解电容作为输出电容 Co 会消除这一现象并保证稳定性。

保护二极管

当外部电容应用于任何基础电路稳压器时,有时必须加保护二极管以防止电容在低电流点向稳压器放电。下图显示了在输出电压超过 25V 或 电容值(Co>25uF,C_{Adj}>10uF)时所推荐的保护二极管 LM317。二极管 D1 防止输入短路时 Co 经集成电路放电。二极管 D2 防止输入短路时 C_{Adj}经集成电路放电。二极管 D1 和 D2 的组合防止输入短路时 C_{Adj}经集成电路放电。

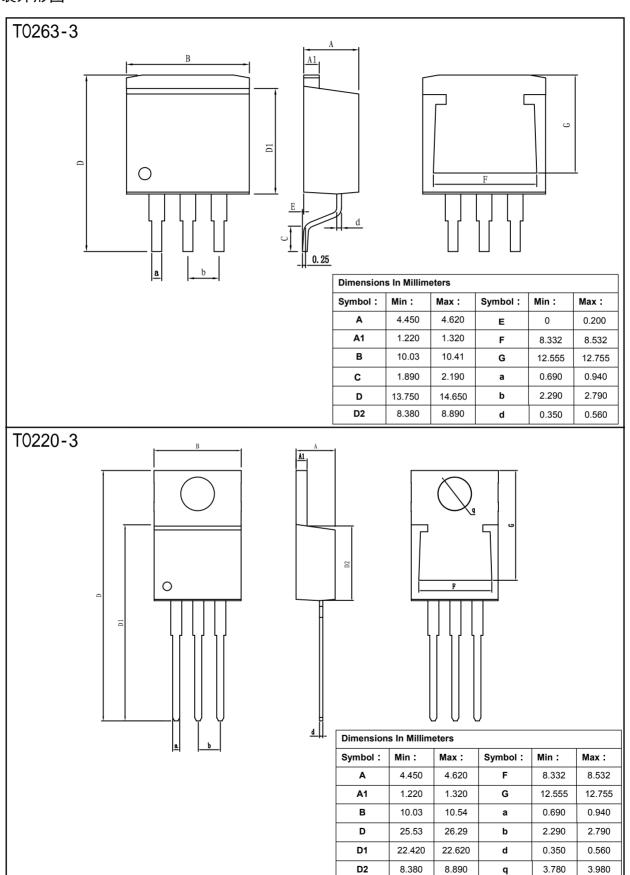
应用电路图


MOS电路操作注意事项:

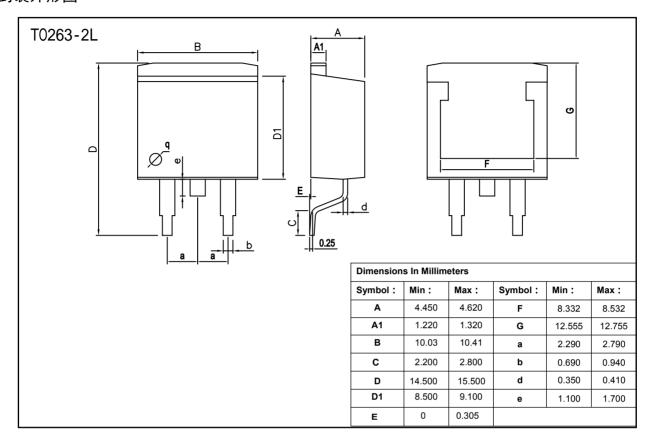

静电在很多地方都会产生,采取下面的 防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- ◆ 必须采用导体包装或抗静电材料包装或运输。

封装外形图



Dimensions In Millimeters						
Symbol:	Min:	Max:	Symbol:	Min:	Max:	
Α	2.100	2.500	D	1.400	1.700	
A1	0.000	0.150	L	0.600	1.000	
В	6.300	6.900	а	0.760 TYP		
С	9.600	10.60	е	2.300 TYP		
C1	5.800	6.400	b	5.330 TYP		
C2	0.4500	0.650				



封装外形图

封装外形图

