

Rail-to-Rail Input/Output, 10 MHz Op Amps

1. Description

This production is wideband, low-noise, low-distortion dual operational amplifier, that offer rail-to-rail inputs/outputs and single supply operation down to 2.2V. They draw 1.6mA of quiescent supply current while featuring ultra-low distortion (0.0002% THD+N), as well as low input voltage-noise density (15nV/Hz) and low input current noise density (0.5fA/Hz). These features make the devices an ideal choice for applications that require low distortion and/or low noise.

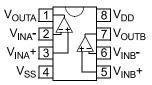
These amplifiers have inputs and outputs which swing rail-to-rail and their input common mode voltage range includes ground. The maximum input offset of these amplifiers is less than 5mV.

This production is unity gain stable with a gain-band width of 10MHz. The extended temperature range of -40°C to +125°C over all supply voltages offers additional design flexibility.

2. Features

- Single-Supply Operation from +2.2V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 10MHz (Typ.)
- Low Input Bias Current: 10pA (Typ.)

Low Offset Voltage: 5mV (Max.)


- Quiescent Current: 800µA per Amplifier (Typ.)
- Operating Temperature: -40°C to +125°C

3. Applications

- Portable Equipment
- Mobile Communications
- Smoke Detector

- Sensor Interface
- Medical Instrumentation

4. Pinning Configuration

5. Ordering Information

Type Number	Package Type	Packing
MCP6022T-I/SN	SOIC-8	Tape & Reel
MCP6022T-E/SN	SOIC-8	Tape & Reel
MCP6022T-I/ST	TSSOP-8	Tape & Reel
MCP6022T-E/ST	TSSOP-8	Tape & Reel
MCP6022-I/P	DIP-8	Tube
MCP6022-E/P	DIP-8	Tube

Note: If the physical information is inconsistent with the ordering information, please refer to the actual product.

www.fulihao.com

6. Absolute Maximum Ratings

Condition	Min	Max	
Power Supply Voltage (V _{DD} to V _{ss})	-0.5V	+7V	
Analog Input Voltage (IN+ or IN-)	Vss-0.5V V=+0.5V		
PDB Input Voltage	Vss-0 .5V	+7V	
Operating Temperature Range	-40°C	+125°C	
Junction Temperature	+150°C		
Storage Temperature Range	-65°C	+150°C	
Lead Temperature (soldering, 10sec)	+300°C		
Package Thermal Resistance (T _A =+25°C)			

7. Electrical Characteristics

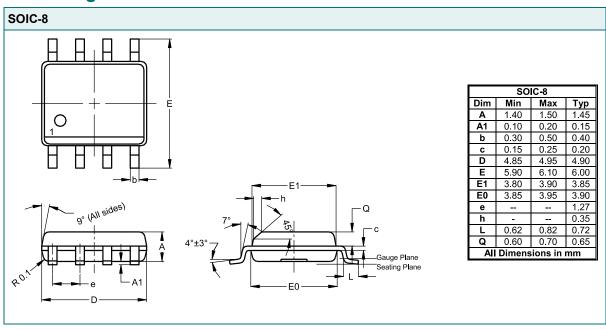
 $(V_{DD} = +5V, V_{ss} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = 100K \text{ tied to } V_{DD}/2, SHDNB = V_{DD}, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C$) (Notes 1)

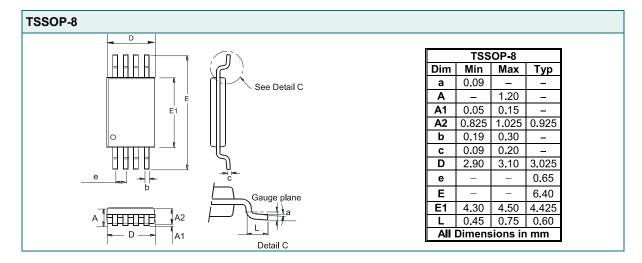
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply Voltage Range	V_{DD}	Guaranteed by the PSRR test	2.2		5.5	V
Quiescent Supply Current (per		$V_{DD} = 3V$		0.8		mA
Amplifier)	I _{DD}	V _{DD} = 5V		0.8	1 .2	1111/4
Input Offset Voltage	Vos	T _A = 25°C			土5	mV
		T _A =-40°C to +85°C				
		T _A =-40°C to +125°C			士 1.5	
Input Offset Voltage Tempco	ΔV _{OS} /ΔΤ			±0.3	±6	μV / 它
Input Bias Current	I _B	(Note 3)		± 1	± 100	pА
Input Offset Current	Ios	(Note 3)		土1	土 100	pА
Input Common-Mode Voltage		Guaranteed by the T _A =-40°C to			Voo+0.2	V
Range	V _{CM}	+125°C	0.2		V00+0.2	
rvange		CMRR test $T_A = -40 \degree C$ to $+125 \degree C$			VD DO	
	CMRR	$Vss-0.2V \leq V_{CM} \leq V_{DD}+0.2V$		75		dB
		T _A = 25°C				
Common-Mode Rejection Ratio		Vss≼V _{CM} ≼5V	65	80		
Common-wode Rejection Ratio		T _A = +25°C	03			
		$Vss-0.2V \leq V_{CM} \leq V_{DD}+0.2V$		65		
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		03		
Power-Supply Rejection Ratio	PSRR	V _{DD} = +2.2V to +5.5V	75	90		dB
Open-Loop Voltage Gain	A _V	R_L =100k Ω to $V_{DD}/2$,	90 100			
		100mV≼V ₀ ≼V _{DD} -125mV		100		
		$R_L=1k\Omega$ to $V_{DD}/2$,	75 85		dB	
		200mV≤V _O ≤V _{DD} -250mV		გ ე		- ab
		R_L =500 Ω to $V_{DD}/2$,	EE 05	G.E.		
		350mV ≤ V _O ≤ V _{DD} -500mV	55	65		

OPERATIONAL AMPLIFIER

		1	_	1	1	
		$ V_{IN+} - V_{IN-} \geqslant 10 \text{mV}$		10	35	
		V _{DD} - V _{OH}				
		$R_L = 10k\Omega$ to $V_{DD}/2$		10	30	
		V _{OL} -V _{SS}			00	mA V V μs μs μA pF MHz V/μs MHz deg dB μs pF
	V _{OUT}	$ V_{IN+} - V_{IN-} \geqslant 10$ mV		80	200	
Output Voltage Swing		V _{DD} - V _{OH}				
Output voitage owing		$R_L = 1k\Omega$ to $V_{DD}/2$		50	150	
		V _{OL} -V _{SS}				
		$ V_{IN+} - V_{IN-} \geqslant 10$ mV		100	350	
		V _{DD} - V _{OH}				
		$R_L = 500\Omega$ to $V_{DD}/2$		80	260	
		V _{OL} -V _{SS}		00	200	
Output Short-Circuit Current	I _{SC}	Sinking or Sourcing		±50		mA
PDB Logic Low	VIL				0.8	V
PDB Logic High	V _{IH}		2			V
Turn-On Time	T _{ON}			2.2		μs
Turn-Off Time	T _{OFF}			0.8		μs
Output Leakage Current	I _{LEAK}	Shutdown Mode (PDB = V _{SS}),	wn Mode (PDB = V_{SS}), $\pm 0.001 \pm 1$	+10	пΑ	
Carpar Zeanage Carrent	$V_{OUT} = V_{SS}$ to V_{DD}			Par 1		
Input Capacitance	C _{IN}			10		pF
Gain Bandwidth Product	GBW	A _V = +1V/V		10		MHz
Slew Rate	SR	A _V = +1V/V		4.5		V/µs
Full Power Bandwidth		A _V = +1V/V		0.4		MHz
Phase Margin	Φ _m	A _V = +1V/V		55		MHz V/µs MHz deg
Gain Margin	G _m	A _V = +1V/V		12		dB
Settling Time	ts	To 0.01%, V _{OUT} = 2V step		1		us
	-3	Av = +1V/V		·		F-5
Capacitive-Load Stability	C _{LOAD}	No sustained oscillations.		200		pF
- Capacitive Load Oldering		Av= +1V/V				
Peak-to-Peak Input Noise	e _n (p-p)	f = 0.1Hz to 10Hz		5		μVp-p
Voltage (Note 5)						
		f = 10Hz		60		
Input Voltage Noise Density	e _n	f = 1kHz		30		nV/√ <i>Hz</i>
		f = 30kHz		15		_
Input Current Noise Density	In	f = 1kHz				fA/\sqrt{Hz}
		V _{OUT} = 2Vp-p,		_		
Total Harmonic Distortion plus Noise	THD+N	$A_V = +1V/N$, $f = 1kHz$		0.0001		%
		RL = $10k\Omega$ to GND f = $20kHz$		0.002		
		$V_{OUT} = 2Vp-p,$				

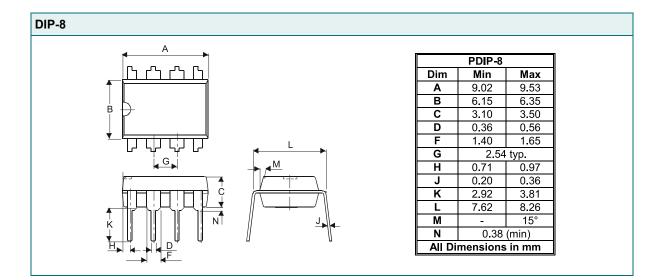
OPERATIONAL AMPLIFIER


$A_V = +1V/V$, $f = 1kHz$	0.0002	
RL = $1k\Omega$ to GND f = $20kHz$	0.004	


Note1: All devices are 100% production tested at $T_A = +25$ °C, all specifications over the automotive temperature range are guaranteed by design, not production tested.

Note2: Parameter is guaranteed by design.

Note3: Peak-to-peak input noise voltage is defined as six times RMS value of input noise voltage


8. Package Outlines

OPERATIONAL AMPLIFIER

9. Disclaimers

Limited warranty and liability

Information in this document is believed to be accurate and reliable. However, Fulihao does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Suitability for use

Fulihao products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable Fulihao product documentation.

Right to make changes

Fulihao reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. Fulihao takes no responsibility for the content in this document if provided by an information source outside of Fulihao. This document supersedes and replaces all information supplied prior to the publication hereof.