BCD-to-Decimal Decoder / Driver

1. Description

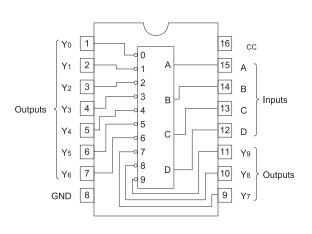
The SN74LS145 is a BCD-to-Decimal Decoder / Driver, with open drain output structure (with 15 V outputs). It consists of eight inverters and ten four-input NAND gates.

2. Features

- BCD-to-Decimal Decoder / Driver.
- Open drain output structure (with 15 V outputs).
- Fully compatible with TTL input and output logic level
- Package: DIP16, SOP16

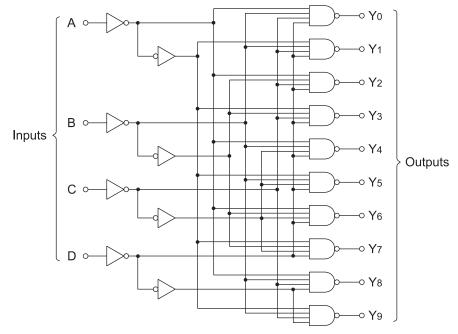
3. Applications

- Signal decoding processing.
- Industrial control applications
- Other application areas Battery-powered equipment


4. Ordering Information

Type Number	Package Type	Packing	Notes
SN74LS145N	DIP-16	Tube	
SN74LS145D	SOP-16	Tape & Reel	

Note: If the physical information is inconsistent with the ordering information, please refer to the actual product.


5. Pin Assignment

SOP16 or DIP16										
Pin NO	Pin Definition	Pin NO	Pin Definition							
1	Output 0Y	16	Supply Vcc							
2	Output 1Y	15	Input A							
3	Output 2Y	14	Input B							
4	Output 3Y	13	Input C							
5	Output 4Y	12	Input D							
6	Output 5Y	11	Output 9Y							
7	Output 6Y	10	Output 8Y							
8	Supply GND	9	Output 7Y							

6. Block Diagram

7. Function Table

Na	Input	Inputs				Outputs								
No.	D	С	в	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	н	Н	н	Н	н	н	н	н	н
1	L	L	L	н	н	L	Н	н	Н	н	н	н	н	н
2	L	L	н	L	н	н	L	н	н	н	н	н	н	н
3	L	L	н	н	н	н	Н	L	н	н	н	н	н	н
4	L	н	L	L	н	н	Н	н	L	н	н	н	н	н
5	L	Н	L	н	н	н	Н	н	Н	L	н	н	н	н
6	L	Н	н	L	н	н	Н	н	Н	н	L	н	н	н
7	L	Н	н	н	н	Н	Н	Н	Н	н	н	L	Н	Н
8	н	L	L	L	н	н	Н	н	н	н	н	н	L	н
9	н	L	L	н	н	н	Н	н	н	н	н	н	н	L
	н	L	н	L	н	н	Н	н	н	н	н	н	н	н
	н	L	н	н	н	н	Н	н	Н	н	н	н	н	н
Involid	н	Н	L	L	н	н	Н	н	Н	н	н	н	н	н
Invalid H	н	Н	L	н	н	н	Н	н	н	н	н	н	н	Н
	н	Н	н	L	н	н	Н	н	н	н	н	н	н	Н
	Н	Н	н	н	Н	н	Н	н	Н	н	н	н	н	Н

Driver

8. Recommended Operating Conditions

Item	Symbol	Min	Тру	Мах	Unit
Supply voltage	V _{CC}	4.75	5	5.25	V
	Vih	2	—	—	V
Input voltage	VIL	—	—	0.8	V
	Іон	—	—	-400	uA
Output current	lol	—	—	8	mA
Operating temperature	T _A	0	—	60	°C

9. Absolute Maximum Ratings

Item	Symbol	Maximum Ratings	Unit
Supply voltage	Vcc	7	V
Input voltage	VI	7	V
Power dissipation	P _D	500	mW
Operating temperature	T _A	0-70	°C
Storage temperature	Ts	-65-150	°C
welding temperature	Tw	260	°C, 10s

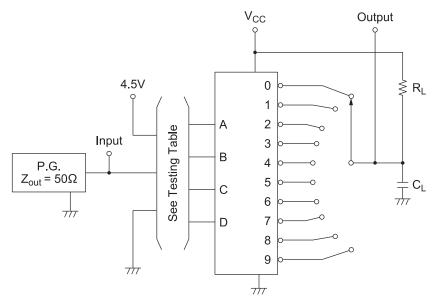
Note: the limit parameter is the limit value that cannot be exceeded under any condition. Once this limit is exceeded, it may cause physical damage such as deterioration of the product. At the same time, the chip can not be guaranteed to work properly when it is close to the limit parameters.

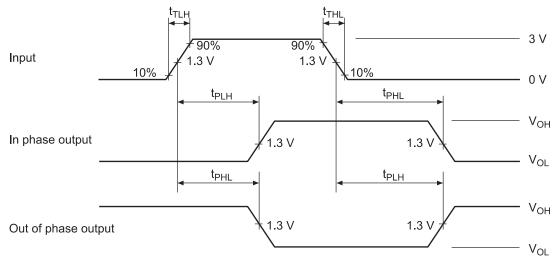
10. Electrical Characteristics

(T _A =25°C, Unless specified)										
Item	Symbol	Min	Тру	Max	Unit	Conditions				
Output current	I _{O(OFF)}	0	0.01	250	uA	V _{OFF} =15V	V_{CC} =4.75V, V_{IL} =0.8V, V_{IH} =2V			
		—	0.25	0.4		lo∟=12mA				
Output voltage	V _{OL(ON)}	—	0.45	0.5	V	I _{OL} =24mA	V_{CC} =4.75V, V_{IL} =0.8V, V_{IH} =2V			
		—	2.9	3.3		I _{OL} =80mA				
	h	—	0.1	100	uA	Vcc=5.25V, V	Vi=7V			
Input current	Іін	—	0.1	20	uA	Vcc=5.25V, VI=2.7V				
	lı∟	—	0.23	0.4	mA	Vcc=5.25V, V	V1=0.4V			
Supply current	Icc	—	7	13	mA	V _{CC} =5.25V, all inputs=GND, outputs open				
Input clamp voltage	Vıк	_	0.9	-1.5	V	Vcc=4.75V,	li=-18mA			

11. Switching Characteristics

(T_A=25°C, Unless specified)

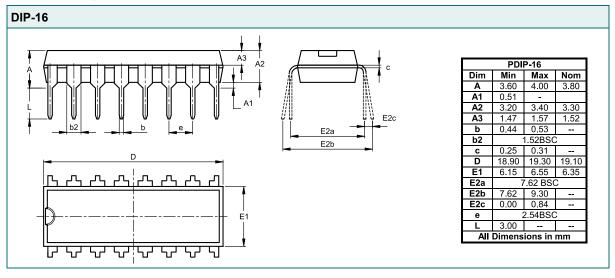

Item	Symbol	Min	Тру	Мах	Unit	Conditions
Propagation delay time	t PHL	—	25	—	ns	
A、B、C、D to Outputs (0 to 9)	t _{PLH}	—	20	—	ns	V_{CC} =5V, C_L =45pF, R_L =665 Ω

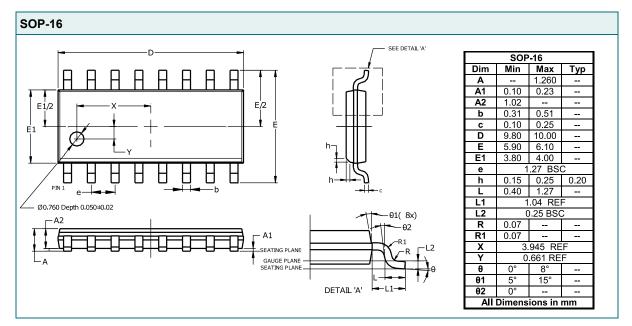

SN74LS145 Driver

12. Testing Method

Test Circuit

Waveform


Note:


- 1. See Testing Table refers to the corresponding test items in the switch characteristic table.
- 2. the CL capacitor is an external patch capacitor (0603), which is connected to the output pin and the capacitor is near the chip GND.
- 3. Input: port input level, f=1MHz, D=50%, tr=tf or less 20ns;
- 4. Output: Y output test port (Out of Phase Output, In Phase Output)

Driver

13. Package Outlines

14. Disclaimers

Limited warranty and liability

Information in this document is believed to be accurate and reliable. However, Fulihao does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Suitability for use

Fulihao products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable Fulihao product documentation.

Right to make changes

Fulihao reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. Fulihao takes no responsibility for the content in this document if provided by an information source outside of Fulihao. This document supersedes and replaces all information supplied prior to the publication hereof.