

1、概 述

SN74LVC/LVCH8T245是一款具有三态输出的 8 位双电源转换收发器,可实现双向电平转换。它们具有两组数据输入和输出端口(引脚 An 和 Bn),一个方向控制输入(DIR),一个输出使能输入(\overline{OE})和双电源($V_{CC(A)}$ 和 $V_{CC(B)}$)。 $V_{CC(A)}$ 和 $V_{CC(B)}$ 均可在 1.2V 和 5.5V 之间的任何电压下供电,从而使该器件适合在任何低压节点之间转换(1.2V,1.5V,1.8V,2.5V,3.3V 和 5.0V)。端口 An, \overline{OE} 和 DIR 由 $V_{CC(A)}$ 供电,端口 Bn 由 $V_{CC(B)}$ 供电。DIR 为高电平时,数据从 An 到 Bn 的传输,DIR 为低电平时,数据从 Bn 到 An 的传输。输出使能输入(\overline{OE})可用于禁用输出,以便于有效隔离总线。

 I_{OFF} 使得该电路完全适用于具有局部掉电的应用。 I_{OFF} 电路禁止输出,以防止在断电时流经该器件的任何有害回流电流。在挂起模式下,当 $V_{CC(A)}$ 或 $V_{CC(B)}$ 处于 GND 电平时,A 端口和 B 端口都处于高阻态。

SN74LVCH8T245具有总线保持电路,使得未使用或悬空的输入口保持在有效逻辑电平。

其主要特点如下:

● 电源电压范围:

 $V_{CC(A)}$: 1.2 $V \sim 5.5V$

 $V_{CC(B)}$: 1.2V \sim 5.5V

● 最大数据传输率:

420Mbps (3.3V~5.0V 转换)

210Mbps (转换为 3.3V)

140Mbps (转换为 2.5V)

75Mbps (转换为 1.8V)

60Mbps (转换为 1.5V)

- 挂起模式
- ±24mA 输出驱动(V_{CC}=3.0V)
- 输入可接受高达 5.5V 的电压
- 低功耗: 30uA 最大 I_{CC}
- I_{OFF} 电路可兼容局部掉电工作方式
- 工作环境温度范围: -40℃~+105℃
- 封装形式: TSSOP24/DHVQFN24

订购信息:

管装:

产品料号	封装形式	打印标识	管装数	盒装管	盒装数	备注说明
SN74LVC8T245 PWR	TSSOP24	SN74LVC8T245	62 PCS/管	200 管/盒	12400 PCS/盒	塑封体尺寸: 7.8mm×4.4mm 引脚间距: 0.65mm
SN74LVCH8T245 PWR	TSSOP24	SN74LVCH8T245	62 PCS/管	200 管/盒	12400 PCS/盒	塑封体尺寸: 7.8mm×4.4mm 引脚间距: 0.65mm

编带:

产品料号	封装形式	打印标识	编带盘装数	编带盒装数	备注说明
SN74LVC8T245 RHLR	DHVQFN24	SN74LVC8T245	3000 PCS/盘	3000 PCS/盒	塑封体尺寸: 5.5mm以.5mm 引脚间距: 0.5mm
SN74LVCH8T245 RHLR	DHVQFN24	SN74LVCH8T245	3000 PCS/盘	3000 PCS/盒	塑封体尺寸: 5.5mm≤3.5mm 引脚间距: 0.5mm
SN74LVC8T245 PWR	TSSOP24	SN74LVC8T245	2500 PCS/盘	5000 PCS/盒	塑封体尺寸: 7.8mm×4.4mm 引脚间距: 0.65mm
SN74LVCH8T245 PWR	TSSOP24	SN74LVCH8T245	2500 PCS/盘	5000 PCS/盒	塑封体尺寸: 7.8mm×4.4mm 引脚间距: 0.65mm

注: 如实物与订购信息不一致,请以实物为准。

2、功能框图及引脚说明

2.1、功能框图

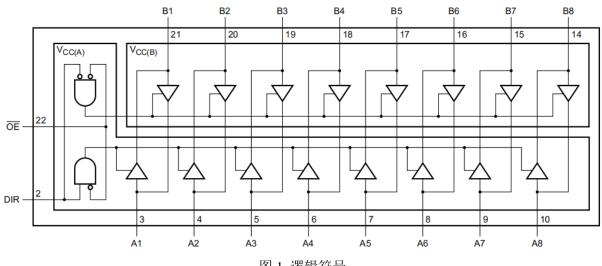


图 1 逻辑符号

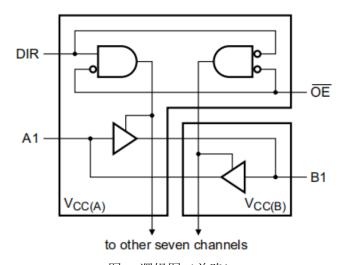
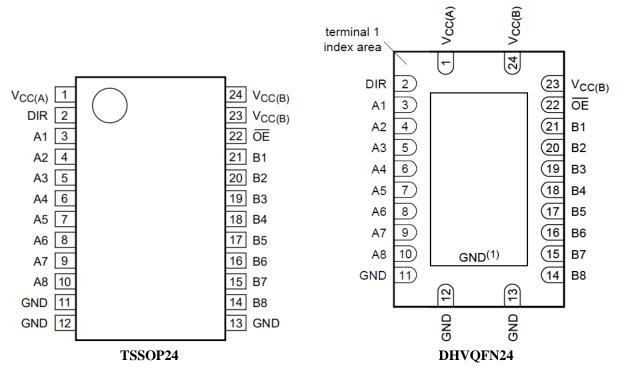



图 2 逻辑图 (单路)

2.2、引脚排列图

注:

(1) 这不是电源引脚,使用导电管芯附着材料将基板附着在其焊盘上。没有电气或机械要求来焊接 该焊盘,但是,如果焊接该焊盘,则焊盘应保持悬空或连接至 GND。

2.3、引脚说明及结构原理图

引脚	符号	功能
1	$V_{CC(A)}$	电源电压 A (An 输入/输出, OE 和 DIR 输入 由 V _{CC(A)} 供电)
2	DIR	方向控制
3, 4, 5, 6, 7, 8, 9, 10	A1~A8	数据输入/输出
11	GND ^[1]	地 (0V)
12	GND ^[1]	地 (0V)
13	GND ^[1]	地 (0V)
21, 20, 19, 18, 17, 16, 15, 14	B1∼B8	数据输入/输出
22	OE	输出使能输入(低电平有效)
23	$V_{CC(B)}$	电源电压 B(Bn 输入/输出由 V _{CC(B)} 供电)
24	$V_{CC(B)}$	电源电压 B(Bn输入/输出由 V _{CC(B)} 供电)

注: [1] 所有 GND 引脚都必须接地 (0V)

2.4、功能表[1]

电源电压	输	入	输入/输出 ^[3]		
$\mathbf{V}_{\mathrm{CC(A)}}$, $\mathbf{V}_{\mathrm{CC(B)}}$	$\overline{\mathbf{O}}\mathbf{E}^{[2]}$ $\mathbf{D}\mathbf{I}\mathbf{R}^{[2]}$		$\mathbf{An}^{[2]}$	$\mathbf{Bn}^{[2]}$	
1.2V~5.5V	L	L	An=Bn	输入	
1.2V~5.5V	L	Н	输入	Bn=An	
1.2V~5.5V	Н	X	Z	Z	
GND ^[3]	X	X	Z	Z	

注:

- [1] H=高电压电平; L=低电压电平; X=无关; Z=高阻态。
- [2] An 输入/输出,DIR 和 \overline{OE} 输入电路由 $V_{CC(A)}$ 供电;Bn 输入/输出电路由 $V_{CC(B)}$ 供电。
- [3] 如果 $V_{CC(A)}$ 或 $V_{CC(B)}$ 中至少有一个处于 GND 电平,设备进入挂起模式。

3、电特性

3.1、极限参数

除非另有规定, T_{amb}=25℃

参数名称	符号	条 件	最小	最大	单 位
电源电压 A	$V_{CC(A)}$	_	-0.5	+6.5	V
电源电压 B	$V_{CC(B)}$	_	-0.5	+6.5	V
输入钳位电流	I_{IK}	V_{I} <0 V	-50	_	mA
输入电压	$V_{\rm I}$	[1]	-0.5	+6.5	V
输出钳位电流	I_{OK}	$V_{O} < 0V$	-50	_	mA
输出电压	V	工作模式[1][2][3]	-0.5	$V_{\rm CCO}^{+}0.5$	V
制	V_{O}	挂起或三态模式[1]	-0.5	+6.5	V
输出电流	I_{O}	$V_{O}=0V\sim V_{CCO}^{[2]}$	_	±50	mA
电源电流	I_{CC}	I _{CC(A)} 或 I _{CC(B)} ; 每个 V _{CC} 引脚	_	100	mA
地电流	I_{GND}	每个 GND 引脚	-100	_	mA
贮存温度	$T_{ m stg}$	_	-65	+150	$^{\circ}$
总功耗	P_{tot}	[4]	_	500	mW
焊接温度	$T_{ m L}$	10 秒	-	250	$^{\circ}$

- 注:[1] 如果遵守输入和输出电流额定值,则可能会超过最小输入电压额定值和输出电压额定值。
 - [2] V_{CCO}是与输出端口关联的电源电压。
 - [3] V_{CCO}+0.5V 不应超过 6.5V。
 - [4] TSSOP24 封装: 高于 60℃, P_{tot} 的值以 5.5mW/K 线性降低。 DHVQFN24 封装: 高于 60℃, P_{tot} 的值以 4.5mW/K 线性降低。

3.2、推荐使用条件

参数名称	符号	条 件	最小	最大	单 位
电源电压 A	$V_{CC(A)}$		1.2	5.5	V
电源电压 B	$V_{CC(B)}$		1.2	5.5	V
输入电压	V_{I}		0	5.5	V
松山中田	V	工作模式[1]	0	V_{CCO}	V
输出电压	V_{O}	挂起或三态模式	0	5.5	V
工作环境温度	T_{amb}	_	-40	+105	$^{\circ}\!\mathbb{C}$
		$V_{CCI}=1.2V^{[2]}$	_	20	ns/V
	Δt/ΔV	$V_{CCI} = 1.4 V \sim 1.95 V$	_	20	ns/V
输入上升和下降转换速率		$V_{CCI} = 2.3 V \sim 2.7 V$	_	20	ns/V
		$V_{CCI}=3V\sim3.6V$	_	10	ns/V
		V_{CCI} =4.5 V \sim 5.5 V	_	5	ns/V

注: [1] V_{CCO}是与输出端口关联的电源电压。

[2] V_{CCI} 是与输入端口关联的电源电压。

3.3、电气特性

3.3.1、直流参数 1(除非另有规定,T_{amb}=25℃)

参数名称	符号	测 试 条 件	最小	典型	最大	单位
高电平输出电压	V_{OH}	$V_{I}=V_{IH}$ $\overrightarrow{\otimes}$ V_{IL} $I_{O}=-3$ mA; $V_{CCO}=1.2$ V		1.09		V
低电平输出电压	V_{OL}	$V_{I}=V_{IH}$ 或 V_{IL} $I_{O}=3mA$; $V_{CCO}=1.2V^{[1]}$		0.07	_	V
输入漏电流 ^[2]	$I_{\rm I}$	DIR, \overline{OE} 输入; V_I = $0V\sim5.5V$; V_{CCI} = $1.2V\sim5.5V^{[2]}$			±1	uA
总线保持低电流	I_{BHL}	A 或 B 端口;V _I =0.42V;V _{CCI} =1.2V ^[2]		19	_	uA
总线保持高电流	I_{BHH}	A 或 B 端口;V _I =0.78V;V _{CCI} =1.2V ^[2]		-19		uA
总线保持低过载 电流	I_{BHLO}	A 或 B 端口; V _{CCI} =1.2V ^{[2][3]}	_	19	_	uA
总线保持高过载 电流 ^{[4][6]}	I_{BHHO}	A 或 B 端口; V _{CCI} =1.2V ^{[2][3]}		-19	_	uA
		A 或 B 端口; V ₀ =0V 或 V _{CCO} ; V _{CCO} =1.2V~5.5V ^[1]	_		±1	uA
截止状态输出电 流	I_{OZ}	挂起模式 A 端口; V_{O} =0 V 或 V_{CCO} ; $V_{CC(A)}$ =5.5 V ; $V_{CC(B)}$ =0 $V^{[1]}$			±1	uA
		挂起模式 B 端口; $V_{O}=0V$ 或 V_{CCO} ; $V_{CC(A)}=0V$; $V_{CC(B)}=5.5V^{[1]}$			±1	uA
拉山泥山沟	т	A 端口; V_{I} 或 V_{O} = 0 V \sim 5.5 V ; $V_{CC(A)}$ = 0 V; $V_{CC(B)}$ = 1.2 V \sim 5.5 V		_	±1	uA
掉电漏电流	I_{OFF}	B 端口; V_I 或 V_O = $0V$ \sim 5.5 V ; $V_{CC(B)}$ = $0V$; $V_{CC(A)}$ = $1.2V$ \sim 5.5 V		_	±1	uA
输入电容	C_{I}	DIR,OE 输入;V _I =0V 或 3.3V; V _{CC(A)} =3.3V		3		pF
输入/输出电容	$C_{I/O}$	A和B端口; V _O =3.3V或0V; V _{CC(A)} =V _{CC(B)} =3.3V	_	6.5		pF

- 注: [1] V_{CCO}是与输出端口关联的电源电压。
 - [2] V_{CCI} 是与数据输入端口关联的电源电压。
 - [3] 为了保证电平切换,当输入在 V_{IL} 至 V_{IH} 范围内时,外部驱动必须至少灌/拉 I_{BHLO}/I_{BHHO} 。

3.3.2、直流参数 2(除非另有规定,T_{amb}=−40℃~+85℃)

参数名称	符号	ž	则 试 条 件	最小	最大	单位
			V _{CCI} =1.2V	$0.8V_{CCI}$	_	V
		$V_{CCI} = 1.4 V \sim 1.95 V$		$0.65V_{CCI}$	_	V
		数据输入[1]	数据输入 ^[1] V _{CCI} =2.3V~2.7V		_	V
			V _{CCI} =3.0V~3.6V	2.0	_	V
方也亚 松)由厅	17		V _{CCI} =4.5V∼5.5V	$0.7V_{CCI}$	_	V
高电平输入电压	V_{IH}		V _{CCI} =1.2V	0.8V _{CC(A)}	_	V
			$V_{CCI} = 1.4 V \sim 1.95 V$	0.65V _{CC(A)}		V
		DIR, OE	$V_{CCI} = 2.3 V \sim 2.7 V$	1.7		V
		输入	$V_{CCI} = 3.0 V \sim 3.6 V$	2.0	_	V
			V_{CCI} =4.5 V \sim 5.5 V	0.7V _{CC(A)}		V
			V _{CCI} =1.2V	_	$0.2V_{CCI}$	V
			$V_{CCI} = 1.4 V \sim 1.95 V$	_	$0.35V_{CCI}$	V
		数据输入 ^[1]	V_{CCI} =2.3V \sim 2.7V	_	0.7	V
			V_{CCI} =3.0 V \sim 3.6 V	_	0.8	V
低电平输入电压	$V_{\rm IL}$		V_{CCI} =4.5 V \sim 5.5 V	_	$0.3V_{CCI}$	V
以电工制八电压		DIR, OE 输入	$V_{CCI}=1.2V$	_	$0.2V_{CC(A)}$	V
			$V_{CCI}=1.4V\sim1.95V$	_	$0.35V_{CC(A)}$	V
			V_{CCI} =2.3 V ~2.7 V	_	0.7	V
			$V_{CCI} = 3.0 V \sim 3.6 V$	_	0.8	V
			V_{CCI} =4.5 V \sim 5.5 V	_	$0.3V_{CC(A)}$	V
			I _O =-100uA;			V
			$V_{CCO} = 1.2 \text{V} \sim 4.5 \text{V}^{[2]}$	V _{CC} -0.1		•
			$I_{O} = -6 \text{mA}; V_{CCO} = 1.4 \text{V}$	1.0	_	V
高电平输出电压	V_{OH}	$V_{I}=V_{IH}$	$I_0 = -8 \text{mA}; V_{CCO} = 1.65 \text{V}$	1.2	_	V
			$I_0 = -12 \text{mA}; V_{CCO} = 2.3 \text{V}$	1.9	_	V
			$I_0 = -24 \text{mA}; V_{CCO} = 3.0 \text{V}$	2.4		V
			$I_0 = -32 \text{mA}; V_{CCO} = 4.5 \text{V}$	3.8	_	V
			$I_{O}=100uA;$ $V_{CCO}=1.2V\sim4.5V$	_	0.1	V
			$I_O=6mA$; $V_{CCO}=1.4V$	_	0.3	V
低电平输出电压	V_{OL}	$V_I = V_{IL}^{[2]}$	I _O =8mA; V _{CCO} =1.65V	_	0.45	V
			I ₀ =12mA; V _{CCO} =2.3V	_	0.3	V
			$I_O=24$ mA; $V_{CCO}=3.0$ V	_	0.55	V
			I _O =32mA; V _{CCO} =4.5V	_	0.55	V
输入漏电流	I _I		输入; V _I =0V~5.5V; _{CI} =1.2V~5.5V	_	±2	uA
苏姆伊廷 伊西达	T	A或B端口	$V_{I}=0.49V; V_{CCI}=1.4V$	15	_	uA
总线保持低电流	$I_{ m BHL}$	[1]	V _I =0.58V; V _{CCI} =1.65V	25	_	uA

SN74LVC/LVCH8T245

			V _I =	=0.70V; V _{CCI} =2.3V	45	_	uA
			V _I =	0.80V; V _{CCI} =3.0V	100	_	uA
			V _I =	1.35V; V _{CCI} =4.5V	100	_	uA
			V _I =	0.91V; V _{CCI} =1.4V	-15	_	uA
		n	$V_{I}=$	1.07V; V _{CCI} =1.65V	-25	_	uA
总线保持高电流	I_{BHH}	A或B端口	V _I =	:1.70V; V _{CCI} =2.3V	-45	_	uA
			V _I =	2.00V; V _{CCI} =3.0V	-100	_	uA
			V _I =	3.15V; V _{CCI} =4.5V	-100	_	uA
				V _{CCI} =1.6V	125	_	uA
ム /b /b ++ /d /-+ +b		15 = 100 ==		V _{CCI} =1.95V	200	_	uA
总线保持低过载	I_{BHLO}	A或B端口 [1][3]		V _{CCI} =2.7V	300	_	uA
电流		1 12-1		V _{CCI} =3.6V	500	_	uA
				V _{CCI} =5.5V	900	_	uA
				V _{CCI} =1.6V	-125	_	uA
V / D / D / L > 1 - L b		n		V _{CCI} =1.95V	-200	_	uA
总线保持高过载	I_{BHHO}	A或B端口 [1][3]		V _{CCI} =2.7V	-300	_	uA
电流	Dillio	[1][3]		V _{CCI} =3.6V	-500		uA
				V _{CCI} =5.5V	-900		uA
		A 或 B 端口; V _O =0V or V _{CCO} ;					
	I_{OZ}		$_{CO}=1.2V\sim5.5V^{[2]}$		_	± 2	uA
截止状态输出电		挂起模式 A 端口; V_{O} =0V or V_{CCO} ; $V_{CC(A)}$ =5.5V; $V_{CC(B)}$ =0 $V^{[2]}$			1.0	A	
流						±2	uA
		挂起模式 B	挂起模式 B 端口; V _O =0V or V _{CCO} ;			±2	uA
		$V_{CC(A)}=$	$V_{CC(A)}=0V; V_{CC(B)}=5.5V^{[2]}$		_		uA
		A 端口; V	$V_{\rm I}$ or $^{\circ}$	$V_0=0V\sim5.5V$;	_	±2	uA
掉电漏电流	I_{OFF}		$V_{CC(A)}=0V; V_{CC(B)}=1.2V\sim5.5V$			2	U1 1
14, G 1/M , G 1/III	TOFF	B端口; V _I o		; $V_I \text{ or } V_O = 0V \sim 5.5V$;		±2	uA
		$V_{\text{CC(B)}}=0V$	V ; V_0	$_{\text{CC(A)}} = 1.2 \text{V} \sim 5.5 \text{V}$		= 2	47.1
				$V_{CC(A)}$, $V_{CC(B)}=1.2$	_	15	uA
		A 端口;		V∼5.5V			
		$V_I=0V \text{ or } V_C$	CI;	$V_{CC(A)}=5.5V;$	_	15	uA
		$I_{O}=0A^{[1]}$		$V_{CC(B)}=0V$			
				$V_{\text{CC(A)}}=0V;$ $V_{\text{CC(B)}}=5.5V$	-2	_	uA
				$V_{CC(A)}, V_{CC(B)} =$			
+4 1 1 3	_			$1.2V \sim 5.5V$	_	15	uA
静态电流	I_{CC}	B端口; V _I =	=0V	$V_{CC(B)}=0V;$			
		or V _{CCI} ; I _O =		$V_{CC(A)}=5.5V$	-2	_	uA
				$V_{CC(B)} = 5.5V;$		15	η Δ
				V _{CC(A)} =0V		13	uA
		A加B端					
		$(I_{CC(A)}+I_{CC(B)})$	₃₎);	$V_{CC(A)}, V_{CC(B)}=$	_	25	uA
		$I_{O}=0A;$		1.2V∼5.5V			
		V _I =0V or V					
串通电流	ΔI_{CC}	每个输入;		DIR 和 OE 输入;	_	50	uA
中世电抓	AICC	$V_{CC(A)}, V_{CC(A)}$		DIR 或OE 输入在			

3.0V~5.5V	V _{CC(A)} -0.6V上; A 端口在 V _{CC(A)} 或 GND上; B端口			
	=open A 端口; A 端口在 V _{CC(A)} -0.6V 上; DIR 在 V _{CC(A)} 上; B 端口=open ^[4]	_	50	uA
	B 端口; B 端口在 V _{CC(B)} -0.6V 上; DIR 在 GND 上; A 端口=open ^[4]	_	50	uA

注:

- [1] V_{CCI} 是与数据输入端口关联的电源电压。
- [2] Vcco是与输出端口关联的电源电压。
- [3] 为了保证电平切换,当输入在 V_{IL} 至 V_{IH} 范围内时,外部驱动必须至少灌/拉 I_{BHLO}/I_{BHHO} 。
- [4] 仅适用于无总线保持的 SN74LVC8T245。

3.3.3、直流参数 3(除非另有规定,T_{amb}=-40℃~+105℃)

参数名称	符号	ž	则试条件	最小	最大	单位
			V _{CCI} =1.2V	$0.8V_{CCI}$		V
			$V_{CCI} = 1.4 V \sim 1.95 V$			V
		数据输入[1]	V_{CCI} =2.3V \sim 2.7V	1.7		V
			V_{CCI} =3.0 V \sim 3.6 V	2.0		V
。 高电平输入电压	V_{IH}		V_{CCI} =4.5 V \sim 5.5 V	$0.7V_{CCI}$		V
同电工制八电压	V IH		$V_{CCI}=1.2V$	$0.8V_{CC(A)}$		V
		DID	$V_{CCI} = 1.4 V \sim 1.95 V$	$0.65V_{CC(A)}$		V
		DIR,OE 输入	$V_{\text{CCI}}=2.3V\sim2.7V$	1.7		V
		1111八	$V_{\text{CCI}}=3.0V\sim3.6V$	2.0		V
			V_{CCI} =4.5 V \sim 5.5 V	$0.7V_{CC(A)}$		V
	V		$V_{\text{CCI}}=1.2V$		$0.2V_{CCI}$	V
		数据输入[1]	$V_{CCI} = 1.4 V \sim 1.95 V$	_	$0.35V_{\rm CCI}$	V
			$V_{CCI}=2.3V\sim2.7V$	_	0.7	V
			V_{CCI} =3.0V \sim 3.6V	_	0.8	V
低电平输入电压			V_{CCI} =4.5 V \sim 5.5 V	_	$0.3V_{CCI}$	V
10. 电 1 制/ 电压	V_{IL}		$V_{CCI}=1.2V$	_	$0.2V_{CC(A)}$	V
			$V_{CCI} = 1.4 V \sim 1.95 V$	_	$0.35V_{CC(A)}$	V
		DIR,OE 输入	$V_{\text{CCI}}=2.3V\sim2.7V$	_	0.7	V
		1111八	$V_{\text{CCI}}=3.0V\sim3.6V$	_	0.8	V
			V_{CCI} =4.5 V \sim 5.5 V	_	$0.3V_{CC(A)}$	V
			I _O =-100uA;	V _{CC} -0.1		V
 高电平输出电压	V_{OH}	$V_{I}=V_{IH}$	$V_{CCO}=1.2V\sim4.5V^{[2]}$,
1月七十十十七七	• ОН	$\mathbf{v}_{\mathrm{I}} = \mathbf{v}_{\mathrm{IH}}$	$I_O = -6mA$; $V_{CCO} = 1.4V$	1.0		V
			$I_0 = -8 \text{mA}; V_{CCO} = 1.65 \text{V}$	1.2		V

SN74LVC/LVCH8T245

				9.1	<i>,</i> , <u> </u>	LVOITO	
			I _O =	-12mA; V _{CCO} =2.3V	1.9	_	V
				-24mA; V _{CCO} =3.0V	2.4		V
				-32mA; V _{CCO} =4.5V	3.8	_	V
				I _O =100uA;		0.1	X 7
			7	$V_{\rm CCO} = 1.2 \text{V} \sim 4.5 \text{V}$		0.1	V
			Io=	=6mA; V _{CCO} =1.4V	_	0.3	V
低电平输出电压	V_{OL}	$V_{I}=V_{IL}^{[2]}$	$I_{O}=$	8mA; V _{CCO} =1.65V	_	0.45	V
			$I_{O}=$	12mA; V _{CCO} =2.3V	_	0.3	V
			$I_{O}=$	24mA; $V_{CCO}=3.0V$	_	0.55	V
			I _O =	32mA; V _{CCO} =4.5V	_	0.55	V
松) 泥山沟	T	DIR, OE	输入:	$V_{I}=0V\sim5.5V;$		J- 10	A
输入漏电流	I_{I}			2V~5.5V	_	± 10	uA
				=0.49V; V _{CCI} =1.4V	10		uA
		D. Albert		0.58V; V _{CCI} =1.65V	20		uA
总线保持低电流	$I_{ m BHL}$	A或B端口	V _I =	=0.70V; V _{CCI} =2.3V	45		uA
				=0.80V; V _{CCI} =3.0V	80		uA
				1.35V; V _{CCI} =4.5V	100		uA
				0.91V; V _{CCI} =1.4V	-10	_	uA
	I_{BHH}		_	1.07V; V _{CCI} =1.65V	-20	_	uA
总线保持高电流		A或B端口 ^[1]		1.70V; V _{CCI} =2.3V	-45	_	uA
				2.00V; V _{CCI} =3.0V	-80		uA
				3.15V; V _{CCI} =4.5V	-100	_	uA
		A或B端口 [1][3]	-	V _{CCI} =1.6V	125		uA
V 18 10 11 15 15 1 16				V _{CCI} =1.95V	200		uA
总线保持低过载	$I_{ m BHLO}$			V _{CCI} =2.7V	300		uA
电流		[1][5]		V _{CCI} =3.6V	500		uA
				V _{CCI} =5.5V	900		uA
				V _{CCI} =1.6V	-125		uA
V 18 10 11 2-3 1 16				V _{CCI} =1.95V	-200		uA
总线保持高过载	$I_{ m BHHO}$	A或B端口		V _{CCI} =2.7V	-300	_	uA
电流	Dinio	[1][5]		V _{CCI} =3.6V	-500	_	uA
				V _{CCI} =5.5V	-900	_	uA
		A或B端	□; '	V _O =0V or V _{CCO} ;		1.40	
				$V \sim 5.5V^{[2]}$	_	±10	uA
截止状态输出电	т	挂起模式 A	端口:	$V_{O}=0$ V or V_{CCO} ;		1.10	
流	I_{OZ}			$V_{CC(B)}=0V^{[2]}$		±10	uA
				V _O =0V or V _{CCO} ;		J- 10	A
		$V_{CC(A)}=$:0V;	$V_{CC(B)} = 5.5V^{[2]}$	_	±10	uA
		A 端口; V	V _I or '	$V_0=0V\sim5.5V$;		±10	uA
掉电漏电流	I_{OFF}			$_{\text{CC(B)}}=1.2\text{V}\sim5.5\text{V}$	_	<u> </u>	u/A
14 石柳 石机	TOFF			$V_0=0V\sim5.5V$;		±10	uA
				$_{\text{CC(A)}} = 1.2 \text{V} \sim 5.5 \text{V}$		<u>- 10</u>	<i>G1</i> 1
+4 1 1 1 1	_	A端口;		$V_{CC(A)}, V_{CC(B)}=1.2$	_	20	uA
静态电流	I_{CC}	$V_I=0V \text{ or } V_C$	CI;	V~5.5V			
		$I_{O} = 0A^{[1]}$		$V_{CC(A)}=5.5V;$	_	20	uA

			$V_{CC(B)}=0V$			
			$V_{\text{CC(A)}}=0V;$ $V_{\text{CC(B)}}=5.5V$	-4	_	uA
			$V_{\text{CC(A)}}, V_{\text{CC(B)}} = 1.2 \text{V} \sim 5.5 \text{V}$		20	uA
		B端口; V _I =0V or V _{CCI} ; I _O =0A	V _{CC(B)} =0V; V _{CC(A)} =5.5V	-4	_	uA
			$V_{\text{CC(B)}}=5.5\text{V};$ $V_{\text{CC(A)}}=0\text{V}$		20	uA
		A加B端口 (I _{CC(A)} +I _{CC(B)}); I _O =0A; V _I =0V or V _{CCI}	$V_{\text{CC(A)}}, V_{\text{CC(B)}} =$ $1.2V \sim 5.5V$	_	30	uA
		每个输入;	DIR 和 OE 输入; DIR 或 OE 输入在 V _{CC(A)} -0.6V 上; A 端口在 V _{CC(A)} 或 GND 上; B 端口 =open		75	uA
串通电流	ΔI_{CC}	$V_{\text{CC(A)}}, V_{\text{CC(B)}} = 3.0 \text{V} \sim 5.5 \text{V}$	A 端口; A 端口在 $V_{CC(A)}$ -0.6 V 上; DIR 在 $V_{CC(A)}$ 上; B 端口=open $[4]$		75	uA
			B 端口; B 端口在 V _{CC(B)} -0.6V 上; DIR 在 GND 上; A 端口=open ^[4]	_	75	uA

注.

- [4] V_{CCI} 是与数据输入端口关联的电源电压。
- [5] V_{CCO}是与输出端口关联的电源电压。
- [6] 为了保证电平切换,当输入在 V_{IL} 至 V_{IH} 范围内时,外部驱动必须至少灌/拉 I_{BHLO}/I_{BHHO} 。
- [4] 仅适用于无总线保持的 SN74LVC8T245。

3.3.4、交流参数 1 (除非另有规定, V_{CC(A)}=1.2V, T_{amb}=25℃)

参数名称	符号	测试条件			$V_{\rm C}$	C(B)			单位
多数石物	111 2	侧风乐件	1.2V	1.5V	1.8V	2.5V	3.3V	5.0V	平位
传输延时	4	An to Bn	11.0	8.5	7.4	6.2	5.7	5.4	ns
作制延时	t_{pd}	Bn to An	11.0	10.0	9.5	9.1	8.9	8.9	ns
失能时间	+	OE to An	9.5	9.5	9.5	9.5	9.5	9.5	ns
大服时间	t _{dis}	OE to Bn	10.2	8.2	7.8	6.7	7.3	6.4	ns
使能时间	+	OE to An	13.5	13.5	13.5	13.5	13.5	13.5	ns
文形印] 円	t _{en}	OE to Bn	13.6	10.3	8.9	7.5	7.1	7.0	ns

注: tpd与tPLH和tPHL相同; tdis与tPLZ和tPHZ相同; ten与tPZL和tPZH相同。

3.3.5、交流参数 2(除非另有规定,V_{CC(B)}=1.2V,T_{amb}=25℃)

参数名称	符号	测试条件	$\mathbf{V}_{ ext{CC}(\mathbf{A})}$						单位
多数石柳	117 5	侧风寒什	1.2V	1.5V	1.8V	2.5V	3.3V	5.0V	平位
传输延时	4	An to Bn	11.0	10.0	9.5	9.1	8.9	8.8	ns
1安和 延 的	t_{pd}	Bn to An	11.0	8.5	7.3	6.2	5.7	5.4	ns
失能时间	+	OE to An	9.5	6.8	5.4	3.8	4.1	3.1	ns
大肥时间	t _{dis}	OE to Bn	10.2	9.1	8.6	8.1	7.8	7.8	ns
使能时间	+	OE to An	13.5	9.0	6.9	4.8	3.8	3.2	ns
区形的问	t _{en}	OE to Bn	13.6	12.5	12.0	11.5	11.4	11.4	ns

注: t_{pd}与 t_{PLH}和 t_{PHL}相同; t_{dis}与 t_{PLZ}和 t_{PHZ}相同; t_{en}与 t_{PZL}和 t_{PZH}相同。

3.3.6、交流参数 3 (除非另有规定, V_{CC(A)}=V_{CC(B)}, T_{amb}=25℃)

参数名称	符号	测试条件		V _{CC(A)} 养	$\mathbf{V}_{\mathrm{CC}(\mathbf{B})}$		单位
少数石协	111 2	侧风 新作	1.8V	2.5V	3.3V	5.0V	平位
功耗电容	C	A 端口: (方向 A 至 B); B 端口: (方向 B 至 A)	1	1	1	2	ns
少 <u>村</u> 日	C_{PD}	A 端口: (方向 B 至 A); B 端口: (方向 A 至 B)	13	13	13	13	ns

注: C_{PD}用于确定动态功耗(P_D单位为uW)。

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ 其中:

 f_i =输入频率,单位为 MHz; f_o =输出频率,单位为 MHz;

C_L=输出负载电容,单位为 pF;

 V_{CC} =电源电压,单位为V;

N=输入通道数;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ =输出总和。

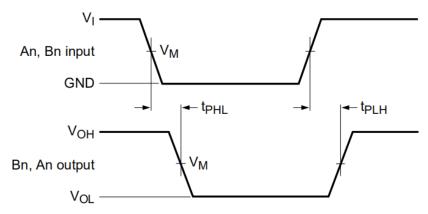
 $f_i \!\!=\!\! 10 MHz; \;\; V_I \!\!=\!\! GND \; to \; V_{CC}; \;\; t_r \!\!=\!\! t_f \!\!=\!\! 1ns; \;\; C_L \!\!=\!\! 0pF; \;\; R_L \!\!=\!\! \infty \Omega_\circ$

3.3.7、交流参数 4(除非另有规定,T_{amb}=−40℃~+85℃)

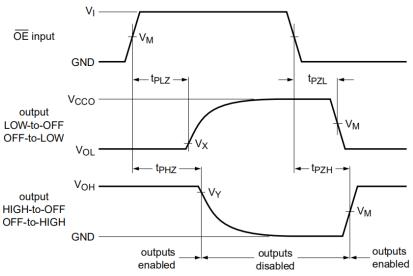
	۵ <i>الا</i> ا .							V	CC(B)					
技術 技術 技術 技術 技術 技術 技術 技術	参数	符号	测试条件	1.5V	E0.1V	1.8V ±	-0.15V			3.3V=	±0.3V	5.0V	±0.5V	单位
技術性	4日4か			最小	最大					最小	最大	最小	最大	
接触		T		1	T					1	Т	Т	1	•
大熊 大橋 大橋 大橋 大橋 大橋 大橋 大橋		tnd												ns
特別 は	延时	-pu	Bn to An											ns
接触		tais	OE to An	1.5	30	1.5	30	1.5	30	1.5	30	1.4	30	ns
日本	时间	uis	OE to Bn	2.4	34	2.4	33	1.9	15	1.7	14	1.3	12	ns
Page		t	OE to An	0.4	34	0.4	34	0.4	34	0.4	34	0.4	34	ns
##	时间	en	OE to Bn	1.8	36	1.8	34	1.5	18	1.2	15	0.9	13	ns
短时 $ ^{\rm lpd} $						Vcc	C(A)=1.8V	± 0.15 V	7					
失能		tnd												ns
特別	延时	c pa	Bn to An	0.9	23	0.9	23.8	0.8	23.6	0.7	23.4	0.7	23.4	ns
特別 中間 中間 中間 中間 中間 中間 中間 中		t	OE to An	1.5	30	1.5	29.6	1.5	29.4	1.5	29.3	1.4	29.2	ns
大き	时间	cais	OE to Bn	2.4	33	2.4	32.2	1.9	13.1	1.7	12.0	1.3	10.3	ns
Refin OE to Bn 1.8 34 1.8 32.0 1.5 16.0 1.2 12.6 0.9 10.8 ns	使能	+	OE to An	0.4	24	0.4	24.0	0.4	23.8	0.4	23.7	0.4	23.7	ns
接輪 延时 t_{pd} $\frac{1}{1}$	时间	Len	OE to Bn	1.8	34	1.8	32.0	1.5	16.0	1.2	12.6	0.9	10.8	ns
接触 $t_{\rm dis}$ $\frac{t_{\rm pd}}{OE to An}$ $\frac{1.2}{1.4}$ $\frac{18}{9.0}$ $\frac{1.2}{1.4}$ $\frac{9.3}{9.0}$ $\frac{1.0}{1.4}$ $\frac{9.1}{9.0}$ $\frac{1.0}{1.4}$ $\frac{8.9}{9.0}$ $\frac{0.9}{1.4}$ $\frac{8.8}{9.0}$ $\frac{9.9}{9.9}$ $\frac{8.8}{9.0}$ $\frac{8.8}{9.0}$ $\frac{9.9}{9.9}$ $\frac{8.8}{9.0}$ $\frac{8.8}{9.0}$ $\frac{9.9}{9.9}$ $\frac{8.8}{9.0}$ $\frac{8.8}{9.0}$ $\frac{9.9}{9.9}$ $\frac{8.8}{9.0}$ $\frac{9.9}{9.9}$ $\frac{8.8}{9.0}$ $\frac{9.9}{9.9}$						$V_{\rm C}$	_{C(A)} =2.5	$V \pm 0.2V$	-					
接能时间 t_{dis} $\frac{\overline{OE} to An}{\overline{OE} to An}$ 1.4 9.0 1.4 9.0 1.4 9.0 1.4 9.0 1.4 9.0 1.4 9.0 1.4 9.0 1.8 11.0 1.7 1.0 1.0 10.9 1.0 $10.$		f .	An to Bn	1.5	23	1.5	21.4	1.2	9.0	0.8	6.2	0.6	4.8	ns
大き 大き 大き 大き 大き 大き 大き 大き	延时	t pd	Bn to An	1.2	18	1.2	9.3	1.0	9.1	1.0	8.9	0.9	8.8	ns
Refin OE to Bn 2.3 31 2.3 29.6 1.8 11.0 1.7 9.3 0.9 6.9 ns		t	OE to An	1.4	9.0	1.4	9.0	1.4	9.0	1.4	9.0	1.4	9.0	ns
Final Ten OE to Bn 1.7 32 1.7 28.2 1.5 12.9 1.2 9.4 1.0 6.9 ns	时间	cais	OE to Bn	2.3	31	2.3	29.6	1.8	11.0	1.7	9.3	0.9	6.9	ns
Refine OE to Bn 1.7 32 1.7 28.2 1.5 12.9 1.2 9.4 1.0 6.9 ns	使能	+	OE to An	1.0	10.9	1.0	10.9	1.0	10.9	1.0	10.9	1.0	10.9	ns
传输 延时 t_{pd} An to Bn 1.5 23 1.5 21.2 1.1 8.8 0.8 6.3 0.5 4.4 ns 失能 时间 t_{dis} \overline{OE} to An 1.6 8.2 1.6 9.2 1.5 8.6 0.8 6.3 ns 世間 t_{en} t_{en} t_{en} t_{en} t_{en} <th< td=""><td>时间</td><td>Len</td><td>OE to Bn</td><td>1.7</td><td>32</td><td>1.7</td><td>28.2</td><td>1.5</td><td>12.9</td><td>1.2</td><td>9.4</td><td>1.0</td><td>6.9</td><td>ns</td></th<>	时间	Len	OE to Bn	1.7	32	1.7	28.2	1.5	12.9	1.2	9.4	1.0	6.9	ns
接触 t_{pd} $Bn to An 0.8 15 0.8 7.2 0.8 6.2 0.7 6.1 0.6 6.0 ns 失能 时间 t_{dis} \overline{OE} to An 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 ns 时间 t_{dis} \overline{OE} to Bn 2.1 30 2.1 29.0 1.7 10.3 1.5 8.6 0.8 6.3 ns 使能 时间 t_{en} \overline{OE} to An 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 ns 时间 t_{en} \overline{OE} to Bn 1.8 31 1.8 27.7 1.4 12.4 1.1 8.5 0.9 6.4 ns t_{pd} t_$						$V_{\rm C}$	_{C(A)} =3.3	V±0.3V	7					
失能 时间 t _{dis} ŌE to An ŌE to Bn 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 1.6 8.2 ns 使能 时间 t _{en} ŌE to An ŌE to Bn 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 ns V _{CC(A)} =5.0V±0.5V 传輸 延时 An to Bn Bn to An 1.5 22 1.5 21.4 1.0 8.8 0.7 6.0 0.4 4.2 ns 失能 时间 T _{tdis} OE to An 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 ns 快能 OE to An 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4		t.	An to Bn	1.5	23	1.5	21.2	1.1	8.8	0.8	6.3	0.5	4.4	ns
时间 t _{dis} ŌĒ to Bn 2.1 30 2.1 29.0 1.7 10.3 1.5 8.6 0.8 6.3 ns 使能时间 t _{en} ŌĒ to An 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 ns V _{CC(A)} =5.0V±0.5V V _{CC(A)} =5.0V±0.5V 传输 延时 An to Bn 1.5 22 1.5 21.4 1.0 8.8 0.7 6.0 0.4 4.2 ns 延时 t _{pd} Bn to An 0.7 13 0.7 7.0 0.4 4.8 0.3 4.5 0.3 4.3 ns 失能时间 T _{dis} OĒ to An 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 ns 快能 T _{dis} OĒ to An 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4	延时	^t pd	Bn to An	0.8	15	0.8	7.2	0.8	6.2	0.7	6.1	0.6	6.0	ns
使能 $t_{\rm en}$ \overline{OE} to Bn 2.1 30 2.1 29.0 1.7 10.3 1.5 8.6 0.8 6.3 ns \overline{OE} to An 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 0.8 8.1 0.8 0.9 0.9 0.8 0.9	失能	t	OE to An	1.6	8.2	1.6	8.2	1.6	8.2	1.6	8.2	1.6	8.2	ns
时间 $t_{\rm en}$ $\overline{\rm OE} to Bn$ 1.8 31 1.8 27.7 1.4 12.4 1.1 8.5 0.9 6.4 ns $V_{\rm CC(A)} = 5.0V \pm 0.5V$	时间	Ldis	OE to Bn	2.1	30	2.1	29.0	1.7	10.3	1.5	8.6	0.8	6.3	ns
OE to Bn 1.8 31 1.8 27.7 1.4 12.4 1.1 8.5 0.9 6.4 ns	使能	_	OE to An	0.8	8.1	0.8	8.1	0.8	8.1	0.8	8.1	0.8	8.1	ns
传输 t_{pd} An to Bn 1.5 22 1.5 21.4 1.0 8.8 0.7 6.0 0.4 4.2 ns \overline{E} Bn to An 0.7 13 0.7 7.0 0.4 4.8 0.3 4.5 0.3 4.3 ns \overline{E} 特能 t_{dis} \overline{OE} to An 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 ns \overline{OE} to Bn 2.0 30 2.0 28.7 1.6 9.7 1.4 8.0 0.7 5.7 ns \overline{E} $$	时间	t _{en}	OE to Bn	1.8	31	1.8	27.7	1.4	12.4	1.1	8.5	0.9	6.4	ns
传输 t_{pd} An to Bn 1.5 22 1.5 21.4 1.0 8.8 0.7 6.0 0.4 4.2 ns \overline{E} Bn to An 0.7 13 0.7 7.0 0.4 4.8 0.3 4.5 0.3 4.3 ns \overline{E} 特能 t_{dis} \overline{OE} to An 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 ns \overline{OE} to Bn 2.0 30 2.0 28.7 1.6 9.7 1.4 8.0 0.7 5.7 ns \overline{E} $$					I.	V _C	_{C(A)} =5.0	$V\pm0.5V$	-		l	l		
失能 \overline{OE} to An 0.7 13 0.7 7.0 0.4 4.8 0.3 4.3 0.3 4.3 ns 失能 \overline{OE} to An 0.3 5.4 0.3 5.4 0.3 5.4 0.3 5.4 ns 使能 \overline{OE} to An 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 ns	传输	4	An to Bn	1.5	22					0.7	6.0	0.4	4.2	ns
时间 t_{dis} \overline{OE} to Bn 2.0 30 2.0 28.7 1.6 9.7 1.4 8.0 0.7 5.7 ns 使能 \overline{OE} to An 0.7 6.4 0.7 6.4 0.7 6.4 0.7 6.4 ns	延时	ι _{pd}	Bn to An	0.7	13	0.7	7.0	0.4	4.8	0.3	4.5	0.3	4.3	ns
使能 ten	失能		OE to An	0.3	5.4	0.3	5.4	0.3	5.4	0.3	5.4	0.3	5.4	ns
the ten	时间	Ldis	OE to Bn	2.0	30	2.0	28.7	1.6	9.7	1.4	8.0	0.7	5.7	ns
Hell ten — I a la l	使能	_	OE to An	0.7	6.4	0.7	6.4	0.7	6.4	0.7	6.4	0.7	6.4	ns
		t _{en}	OE to Bn	1.5	31	1.5	27.6	1.3	11.4	1.0	8.1	0.9	6.0	ns

注: t_{pd}与t_{PLH}和t_{PHL}相同; t_{dis}与t_{PLZ}和t_{PHZ}相同; t_{en}与t_{PZL}和t_{PZH}相同。

3.3.8、交流参数 5(除非另有规定, T_{amb} =−40 $^{\circ}$ C $^{\circ}$ +105 $^{\circ}$ C)


	۵ <i>الا</i> ا .							V	CC(B)					
技術 技術 技術 技術 技術 技術 技術 技術	参数	符号	测试条件	1.5V	E0.1V	1.8V±	-0.15V			3.3V=	±0.3V	5.0V	±0.5V	单位
検給 大きの An to Bn 1.7 32 1.7 2.7 1.3 2.1 1.0 1.8 0.8 1.6 ns 契約 日本の OB to An 0.9 32 0.9 30 0.8 2.8 0.7 2.8 0.7 2.6 ns 政制 Tell OE to An 1.5 34 1.5 34 1.5 34 1.5 3.4 1.7 1.7 1.7 1.3 1.5 ns 機能 Tell OE to An 0.4 40 0.4 40 0.4 40 0.4 40 0.4 40 0.4 40 0.4 40 0.4 40 0.4 40 0.4 40 1.7 1.7 1.7 1.0 1.0 1.8 0.8 1.7 3.0 1.7 2.9 2.8 0.8 2.7.6 0.7 2.7.4 0.7 2.7.4 n.5 大変的 OE to An 0.5 2.4 1.5 3.8	4日4か			最小	最大					最小	最大	最小	最大	
接触 は		1		1	T					Т	•	1	1	•
大熊 大橋 大橋 大橋 大橋 大橋 大橋 大橋		tnd												ns
特別 は	延时	*pu	Bn to An											ns
接触		t _{dia}	OE to An	1.5	34	1.5	34	1.5	34	1.5	34	1.4	34	ns
日本	时间	uis	OE to Bn	2.4	41	2.4	40	1.9	18	1.7	17	1.3	15	ns
Page	使能	+	OE to An	0.4	40	0.4	40	0.4	40	0.4	40	0.4	40	ns
## 技術	时间	L en	OE to Bn	1.8	43	1.8	41	1.5	22	1.2	18	0.9	16	ns
短时 $ ^{\rm lpd} $						$\mathbf{V}_{\mathbf{C}\mathbf{C}}$	_{C(A)} =1.8V	2 ± 0.15 V	I					
失能 けっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱ		fud												ns
特別 t_{dis}	延时	c pa	Bn to An	0.9	27	0.9	28.8	0.8	27.6	0.7	27.4	0.7	27.4	ns
特別 中間 中間 中間 中間 中間 中間 中間 中		t	OE to An	1.5	34	1.5	33.6	1.5	33.4	1.5	33.3	1.4	33.2	ns
大き	时间	dis	OE to Bn	2.4	40	2.4	36.2	1.9	17.1	1.7	16.0	1.3	14.3	ns
特別 OE to Bn 1.8 41 1.8 40 1.5 20 1.2 16.6 0.9 14.8 ns	使能	+	OE to An	0.4	28	0.4	28	0.4	27.8	0.4	27.7	0.4	27.7	ns
接輪 延时 t_{pd} $\frac{1}{1}$	时间	ten	OE to Bn	1.8	41	1.8	40	1.5	20	1.2	16.6	0.9	14.8	ns
接時 t_{pd} $\frac{t_{pd}}{OE}$ $\frac{DE}{OE}$ t_{dis} $\frac{OE}{OE}$ t_{dis} $\frac{OE}{OE}$ t_{dis} $\frac{OE}{OE}$ t_{dis} $\frac{OE}{OE}$ t_{dis} $\frac{OE}{OE}$ t_{dis} $\frac{OE}{OE}$ t_{dis} $\frac{DOE}{OE}$ t_{dis} $\frac{DOE}{OE}$ t_{dis} $\frac{DOE}{OE}$ t_{dis} $\frac{DOE}{OE}$ t_{dis} $\frac{DOE}{OE}$ t_{dis} t_{dis} t_{dis} $\frac{DOE}{OE}$ t_{dis} t_{dis} t_{dis} $\frac{DOE}{OE}$ t_{dis}						V _C	C(A)=2.5	ñ0.2V	•					
失能 时间 $t_{\rm dis}$ $\frac{\overline{\rm OE} to An}{\overline{\rm OE} to An}$ 1.4 1.3 1.5 1		t.	An to Bn	1.5	28	1.5	25.4	1.2	13	0.8	10.2	0.6	8.8	ns
大田 大田 大田 大田 大田 大田 大田 大田	延时	t pd	Bn to An	1.2	23	1.2	13.3	1.0	13.1	1.0	12.9	0.9	12.8	ns
Refin OE to Bn 2.3 37 2.3 33.6 1.8 15 1.7 14.3 0.9 10.9 ns		t	OE to An	1.4	13	1.4	13	1.4	13	1.4	13	1.4	13	ns
特別 $\frac{1}{OE}$ to Bn 1.7 38 1.7 32.2 1.5 18.1 1.2 14.1 1.0 11.2 ns	时间	dis	OE to Bn	2.3	37	2.3	33.6	1.8	15	1.7	14.3	0.9	10.9	ns
Refine OE to Bn 1.7 38 1.7 32.2 1.5 18.1 1.2 14.1 1.0 11.2 ns	使能	+	OE to An	1.0	17.2	1.0	17.2	1.0	17.3	1.0	17.2	1.0	17.3	ns
传输 延时 t_{pd} An to Bn 1.5 28 1.5 25.2 1.1 12.8 0.8 10.3 0.5 10.4 ns 失能 时间 t_{dis} Bn to An 0.8 18 0.8 11.2 0.8 10.2 0.7 10.1 0.6 10 ns 失能 时间 t_{dis} \overline{OE} to An 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 12.2 1.6 0.8 10.3 ns 使能 t_{en} \overline{OE} to An 0.8 14.1 0.8 14.1 0.8 13.6 0.8 13.2 0.8 13.6 ns \overline{OE} to Bn 1.8 37 1.8 <td>时间</td> <td>ten</td> <td>OE to Bn</td> <td>1.7</td> <td>38</td> <td>1.7</td> <td>32.2</td> <td>1.5</td> <td>18.1</td> <td>1.2</td> <td>14.1</td> <td>1.0</td> <td>11.2</td> <td>ns</td>	时间	ten	OE to Bn	1.7	38	1.7	32.2	1.5	18.1	1.2	14.1	1.0	11.2	ns
接触 大						V _C	_{C(A)} =3.3	ñ0.3V	7					
失能 时间 t _{dis} ŌE to An ŌE to Bn 1.6 12.2 ns 使能 时间 t _{en} ŌE to An 0.8 14.1 0.8 14.1 0.8 13.6 0.8 13.2 0.8 13.6 ns V _{CC(A)} =5.0V ± 0.5V V _{CC(A)} =5.0V ± 0.5V 使輸 An to Bn 1.5 26 1.5 25.4 1.0 12.8 0.7 10 0.4 8.2 ns 延时 T _{pd} Bn to An 0.7 16 0.7 11 0.4 8.8 0.3 8.5 0.3<		t.	An to Bn	1.5	28	1.5	25.2	1.1	12.8	0.8	10.3	0.5	10.4	ns
时间 t _{dis} ŌĒ to Bn 2.1 36 2.1 33 1.7 14.3 1.5 12.6 0.8 10.3 ns 使能时间 t _{en} ŌĒ to An 0.8 14.1 0.8 13.6 0.8 13.2 0.8 13.6 ns 传输时间 t _{en} ŌĒ to Bn 1.8 37 1.8 31.7 1.4 18.4 1.1 12.9 0.9 10.9 ns 大院时间 An to Bn 1.5 26 1.5 25.4 1.0 12.8 0.7 10 0.4 8.2 ns 要於的方面 Bn to An 0.7 16 0.7 11 0.4 8.8 0.3 8.5 0.3 8.3 ns 失能时间 T _{dis} OĒ to An 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 ns 使能 OĒ to An 0.7 10.9 </td <td>延时</td> <td>^tpd</td> <td>Bn to An</td> <td>0.8</td> <td>18</td> <td>0.8</td> <td>11.2</td> <td>0.8</td> <td>10.2</td> <td>0.7</td> <td>10.1</td> <td>0.6</td> <td>10</td> <td>ns</td>	延时	^t pd	Bn to An	0.8	18	0.8	11.2	0.8	10.2	0.7	10.1	0.6	10	ns
使能 时间 $t_{\rm en}$ \overline{OE} to Bn 0.8 14.1 0.8 14.1 0.8 13.6 0.8 13.2 0.8 13.6 ns \overline{OE} to Bn 0.8 0.9	失能	f.,.	OE to An	1.6	12.2	1.6	12.2	1.6	12.2	1.6	12.2	1.6	12.2	ns
时间 $t_{\rm en}$ $\overline{\rm OE}$ to Bn 1.8 37 1.8 31.7 1.4 18.4 1.1 12.9 0.9 10.9 ns $t_{\rm CC(A)} = 5.0 {\rm V} \pm 0.5 {\rm V}$ $t_{\rm en}$ $t_{\rm pd}$ An to Bn $t_{\rm pd}$ Bn to An $t_{\rm en}$ 0.7 $t_{\rm en}$ 16 0.7 $t_{\rm en}$ 11 0.4 8.8 0.3 8.5 0.3 8.3 ns $t_{\rm en}$ $t_{\rm dis}$ $t_{\rm dis}$ $t_{\rm en}$	时间	L dis	OE to Bn	2.1	36	2.1	33	1.7	14.3	1.5	12.6	0.8	10.3	ns
OE to Bn 1.8 37 1.8 31.7 1.4 18.4 1.1 12.9 0.9 10.9 ns	使能	_	OE to An	0.8	14.1	0.8	14.1	0.8	13.6	0.8	13.2	0.8	13.6	ns
传输 延时 t_{pd} An to Bn 1.5 26 1.5 25.4 1.0 12.8 0.7 10 0.4 8.2 ns 延时 Bn to An 0.7 16 0.7 11 0.4 8.8 0.3 8.5 0.3 8.3 ns 失能 时间 \overline{OE} to An 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 ns 使能 \overline{OE} to An 0.7 10.9 0.7	时间	t _{en}	OE to Bn	1.8	37	1.8	31.7	1.4	18.4	1.1	12.9	0.9	10.9	ns
延时 t_{pd} Bn to An 0.7 16 0.7 11 0.4 8.8 0.3 8.5 0.3 8.3 ns 失能 时间 \overline{OE} to An 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 ns 使能 ten \overline{OE} to An 0.7 10.9 0.7		•			•	Vc	_{C(A)} =5.0	$V \pm 0.5V$				•	•	
失能 \overline{OE} to An 0.7 16 0.7 11 0.4 8.8 0.3 8.3 0.3 8.3 0.3 8.3 ns 失能 \overline{OE} to An 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 0.3 9.4 ns 使能 \overline{OE} to An 0.7 10.9	传输	+	An to Bn	1.5	26	1.5	25.4	1.0	12.8	0.7	10	0.4	8.2	ns
时间 t_{dis} \overline{OE} to Bn 2.0 36 2.0 32.7 1.6 13.7 1.4 12 0.7 9.7 ns 使能 \overline{OE} to An 0.7 10.9 0.7 10.9 0.7 10.9 0.7 10.9 0.7 10.9 ns	延时	l pd	Bn to An	0.7	16	0.7	11	0.4	8.8	0.3	8.5	0.3	8.3	ns
使能 ten	失能	4	OE to An	0.3	9.4	0.3	9.4	0.3	9.4	0.3	9.4	0.3	9.4	ns
ten	时间	Ldis	OE to Bn	2.0	36	2.0	32.7	1.6	13.7	1.4	12	0.7	9.7	ns
Hell ten — 1.5 cm local to 1.5	使能	_	OE to An	0.7	10.9	0.7	10.9	0.7	10.9	0.7	10.9	0.7	10.9	ns
		t _{en}	OE to Bn	1.5	37	1.5	31.6	1.3	18.4	1.0	13.7	0.9	10.7	ns

注: t_{pd}与t_{PLH}和t_{PHL}相同; t_{dis}与t_{PLZ}和t_{PHZ}相同; t_{en}与t_{PZL}和t_{PZH}相同。


4、测试线路

4.1、交流测试波形

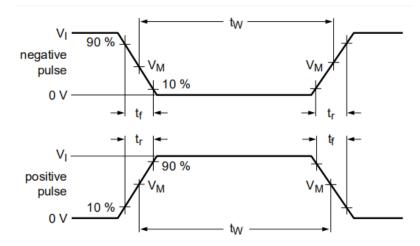
Vol 和 VoH 是带负载时的输出电平电压。

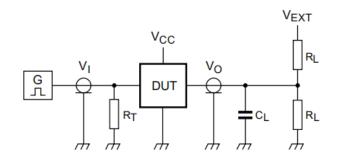
图3 输入(An, Bn)到输出(Bn, An)传输延迟及输出转换时间

Vol 和 VoH 是带负载时的输出电平电压。

图 4 使能和失能时间

4.2、测试点


电源电压	输入[1]		输出 ^[2]	
$V_{CC(A)}$, $V_{CC(B)}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.2V~1.6V	$0.5V_{CCI}$	$0.5V_{CCO}$	V _{OL} +0.1V	V _{OH} -0.1V
1.65V~2.7V	$0.5V_{CCI}$	$0.5V_{CCO}$	V _{OL} +0.15V	V _{OH} -0.15V
3.0V∼5.5V	$0.5V_{CCI}$	$0.5V_{CCO}$	V _{OL} +0.3V	V _{OH} -0.3V


注: [1] V_{CCI}是与数据输入端口关联的电源电压。

^[2] V_{CCO}是与输出端口关联的电源电压。

4.3、交流测试线路

测试电路的定义:

R_T=终端电阻须与信号发生器的输出阻抗 Z_o匹配

C_L=负载电容,包括探针、夹子上的电容

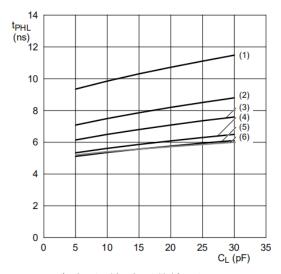
R_L=负载电阻

V_{EXT}=外部电压,用于测量开关时间

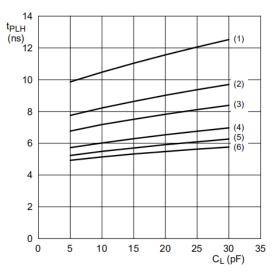
图 5 测试开关时间的测试电路

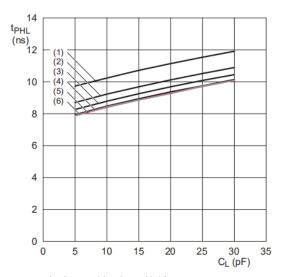
4.4、测试数据

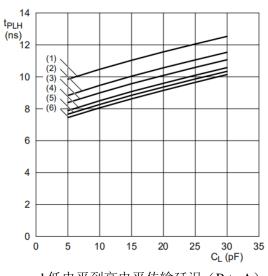
电源电压	箱	入	负	载		V _{EXT}	
$V_{CC(A)}$, $V_{CC(B)}$	$\mathbf{V_{I}}^{[1]}$	$\Delta t/\Delta V^{[2]}$	$\mathbf{C}_{\mathbf{L}}$	\mathbf{R}_{L}	$t_{\rm PLH}$, $t_{\rm PHL}$	t_{PZH} , t_{PHZ}	$t_{PZL}, t_{PLZ}^{[3]}$
1.2V~5.5V	V _{CCI}	≤1.0ns/V	15pF	2kΩ	open	GND	$2V_{CCO}$


注: [1] V_{CCI} 是与数据输入端口关联的电源电压。

[2] $dV/dt \ge 1.0V/ns_{\circ}$

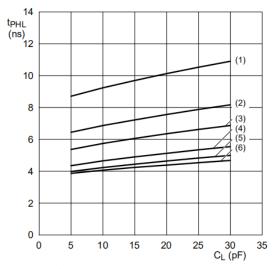

[3] Vcco 是与输出端口关联的电源电压。


5、特性曲线


a.高电平到低电平传输延迟(A to B)

b.低电平到高电平传输延迟(A to B)

c.高电平到低电平传输延迟(B to A)



d.低电平到高电平传输延迟(B to A)

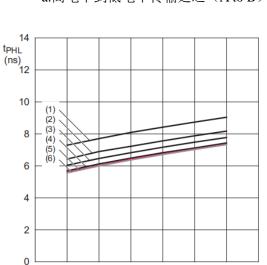
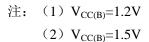
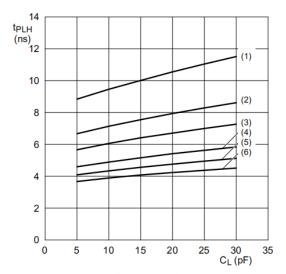

- 注: (1) V_{CC(B)}=1.2V
 - (2) $V_{CC(B)}=1.5V$
 - (3) $V_{CC(B)}=1.8V$
 - (4) $V_{CC(B)}=2.5V$
 - $(5) V_{CC(B)} = 3.3V$
 - (6) $V_{CC(B)}=5.0V$

图 6 典型的传输延迟与负载电容的关系; T_{amb}=25℃; V_{CC(A)}=1.2V



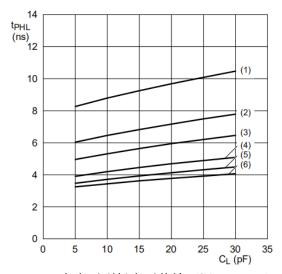
a.高电平到低电平传输延迟(A to B)



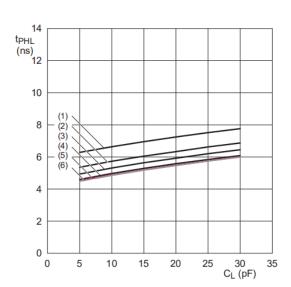

c.高电平到低电平传输延迟(B to A)

C_L (pF)

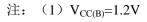
- (3) $V_{CC(B)}=1.8V$
- (4) $V_{CC(B)}=2.5V$
- (5) $V_{CC(B)}=3.3V$
- (6) $V_{CC(B)}=5.0V$

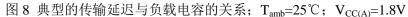


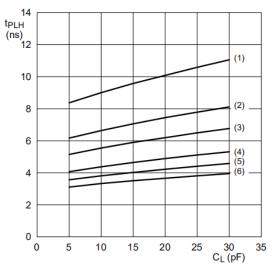
b.低电平到高电平传输延迟(A to B)



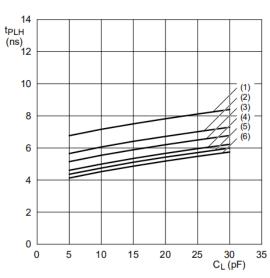
d.低电平到高电平传输延迟(B to A)



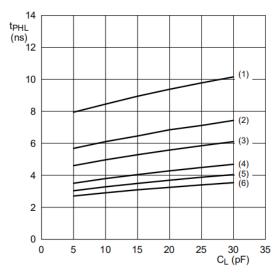

a.高电平到低电平传输延迟(A to B)



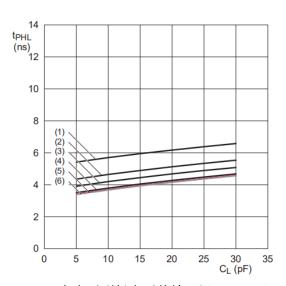
c.高电平到低电平传输延迟(B to A)



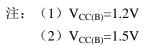
- (2) $V_{CC(B)}=1.5V$
- (3) $V_{CC(B)}=1.8V$
- (4) $V_{CC(B)}=2.5V$
- $(5) V_{CC(B)} = 3.3V$
- (6) $V_{CC(B)}=5.0V$

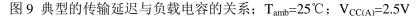


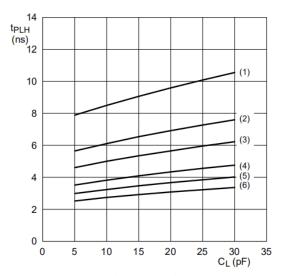
b.低电平到高电平传输延迟(A to B)



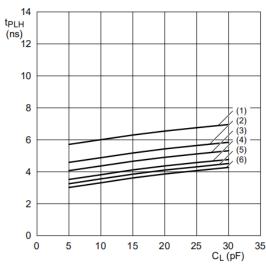
d.低电平到高电平传输延迟(B to A)



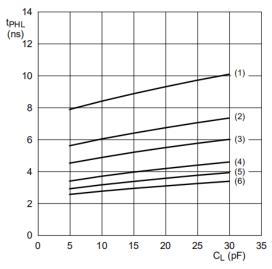

a.高电平到低电平传输延迟(A to B)



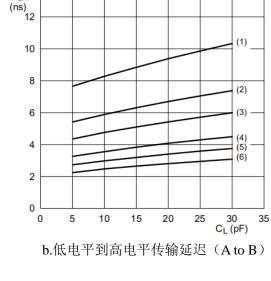
c.高电平到低电平传输延迟(B to A)



- (3) $V_{CC(B)}=1.8V$
- (4) $V_{CC(B)}=2.5V$
- $(5) V_{CC(B)} = 3.3V$
- (6) $V_{CC(B)}=5.0V$

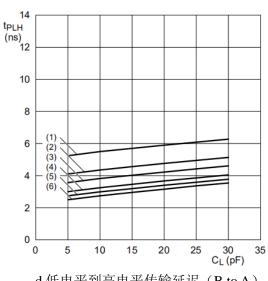


b.低电平到高电平传输延迟(A to B)



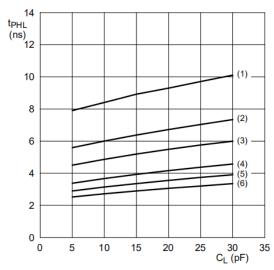
d.低电平到高电平传输延迟(B to A)




a.高电平到低电平传输延迟(A to B)

t_{PLH}

c.高电平到低电平传输延迟(B to A)



d.低电平到高电平传输延迟(B to A)

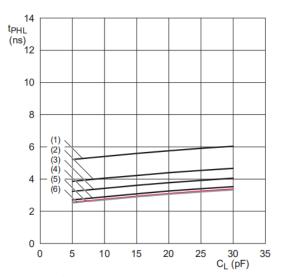
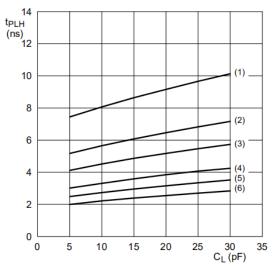
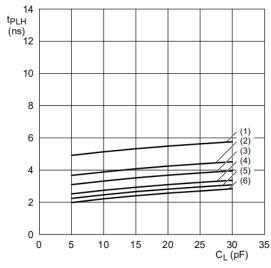

- 注: (1) V_{CC(B)}=1.2V
 - (2) $V_{CC(B)}=1.5V$
 - (3) $V_{CC(B)}=1.8V$
 - (4) $V_{CC(B)}=2.5V$
 - (5) $V_{CC(B)}=3.3V$
 - (6) $V_{CC(B)}=5.0V$

图 10 典型的传输延迟与负载电容的关系; $T_{amb}=25$ °; $V_{CC(A)}=3.3V$

a.高电平到低电平传输延迟(A to B)



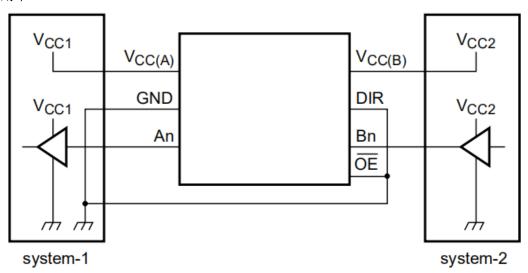
c.高电平到低电平传输延迟(B to A)



- (2) $V_{CC(B)}=1.5V$
- (3) $V_{CC(B)}=1.8V$
- (4) $V_{CC(B)}=2.5V$
- (5) $V_{CC(B)}=3.3V$
- (6) $V_{CC(B)}=5.0V$

图 11 典型的传输延迟与负载电容的关系; $T_{amb}=25$ °; $V_{CC(A)}=5$ V

b.低电平到高电平传输延迟(A to B)


d.低电平到高电平传输延迟(B to A)

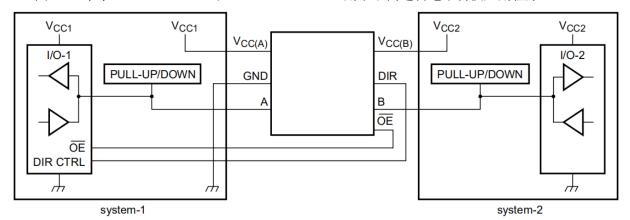
6、典型应用线路与说明

6.1、应用线路1

图 12 给出的电路是 SN74LVC8T245 的一个例子。 SN74LVCH8T245 被用于单向逻辑电平转换应用中。

给出了一个通道的示意图

图 12 单向逻辑电平转换应用


说明单向逻辑电平转换应用

名称	功能	描述
$V_{CC(A)}$	V_{CC1}	系统 1 的电源电压(1.2V~5.5V)
GND	GND	设备 GND
A	OUT	输出电平取决于 V _{CC1} 电压
В	IN	输入阈值取决于 V _{CC2} 电压
DIR	DIR	GND(低电平)确定B端口到A端口的方向
$V_{CC(B)}$	V_{CC2}	系统 2 的电源电压(1.2V~5.5V)
ŌĒ	ŌE	GND(低电平)使能输出端口

6.2、应用线路 2

图 13 显示了 SN74LVC8T245; SN74LVCH8T245 用于双向逻辑电平转换应用程序。

给出了一个通道的示意图

仅 SN74LVC8T245 需要上拉或下拉

图 13 双向逻辑电平转换应用

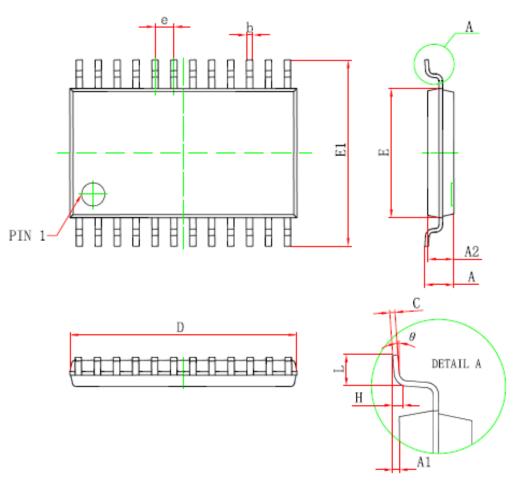
下表给出了一个系列,该序列将说明从系统1到系统2的数据传输然后从系统2到系统1。 说明双向逻辑电平转换应用

状态	DIR CTRL	ŌE	I/O-1	I/O-2	描述
1	Н	L	输出	输入	系统1数据到数据2
2	Н	Н	Z	Z	系统2准备将数据发送到系统1。 I/O-1 和 I/O-2 被禁用。总线状态 取决于总线保持时间。
3	L	Н	Z	Z	DIR 位置低。I/O-1 和 I/O-2 仍然被禁用。总线状态取决于总线保持时间。
4	L	L	输入	输出	系统2数据到数据1

注: H=高电压电平; L=低电压电平; Z=高阻态。

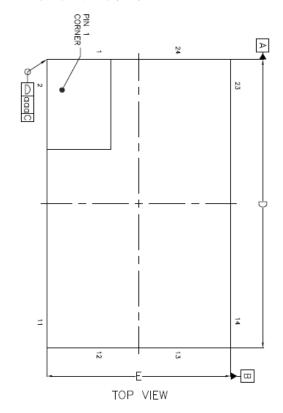
6.3、上电注意事项

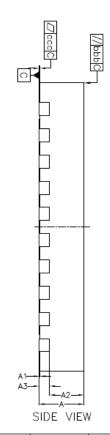
该设备的设计使其不需要特殊的上电顺序,除了首先应用 GND。

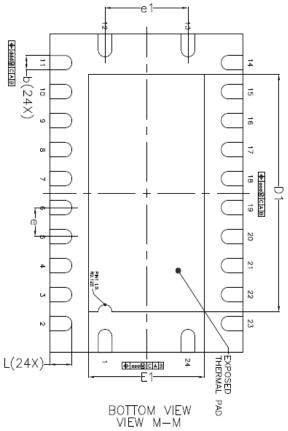

典型总电源电流($I_{CC(A)}+I_{CC(B)}$)

X 7			$V_{CC(B)}$			单位
$V_{CC(A)}$	0V	1.8V	2.5V	3.3V	5.0V	単 仏
0V	0	<1	<1	<1	<1	uA
1.8V	<1	<2	<2	<2	2	uA
2.5V	<1	<2	<2	<2	<2	uA
3.3V	<1	<2	<2	<2	<2	uA
5.0V	<1	2	<2	<2	<2	uA

7、封装尺寸与外形图


7.1、TSSOP24 外形图与封装尺寸




Symbol	Dimensions	In Millimeters	Dimension	s In Inches
Symool	Min	Max	Min	Max
D	7. 700	7. 900	0.303	0.311
E	4. 300	4. 500	0.169	0. 177
Ъ	0.190	0.300	0.007	0.012
c	0.090	0. 200	0.004	0.008
El	6. 250	6. 550	0. 246	0. 258
A		1. 200		0.047
A2	0.800	1.000	0.031	0.039
Al	0.050	0. 150	0.002	0.006
e	0.65	(BSC)	0.026	(BSC)
L	0.500	0. 700	0. 020	0.028
Н	0.25	(TYP)	0.01(TYP)
θ	1°	7°	1°	7°

7.2、DHVQFN24 外形图与封装尺寸

DESCRIPTION		SYMBOL	MILLIMETER		
			MIN	NOM	MAX
TOTAL THICKNESS		А	0.80	0.85	1.00
STAND OFF		A1	0.00	0.02	0.05
MOLD THICKNESS		A2	0.60	0.65	0.70
L/F THICKNESS		А3	0.203 REF		
BODY SIZE	Х	D	5.40	5.50	5.60
	Υ	E	3.40	3.50	3.60
LEAD PITCH		е	0.50 BSC		
		e1	1.50 BSC		
LEAD WIDTH		ь	0.18	0.25	0.30
LEAD LENGTH		L	0.30	0.40	0.50
EP SIZE		D1	3.95	4.10	4.25
		E1	1.95	2.10	2.25
Tolerance of form and position					
aaa		0.1			
bbb		0.1			
ccc		0.05			
ddd		0.1			
eee		0.1			

NOTES

1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.