

# CURRENT MODE PWM CONTROLLER

#### DESCRIPTION

The UC284x and UC384x are fixed frequency current mode PWM controller. They are specially designed for OFF–Line and DC to DC converter applications with a minimal external components. Internally implemented circuits include a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET. Protection circuitry includes built under voltage lockout and current limiting.

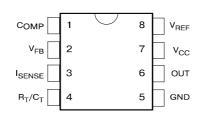
The UC2842/44, UC3842/44 have UVLO thresholds of 16 V (on) and 10 V (off). The corresponding thresholds for the UC2843/45, UC3843/45 are 8.4V (on) and 7.6V (off). The UC2842/43, UC3842/43 can operate within 100% duty cycle.

The UC2844/45, UC3844/45 can operate within 50% duty cycle.

The UC2842/44/44/45 is characterized for operation from  $T_A = -40^{\circ}C$  to  $85^{\circ}C$ .

The UC3842/43/44/45 is characterized for operation from  $T_A = 0$  °C to 70 °C.

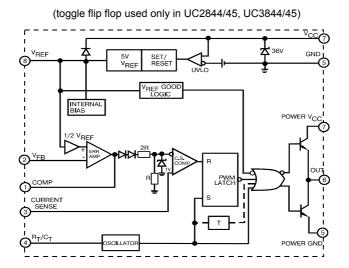
#### FEATURES


- Low Start-Up and Operating Current
- High Current Totem Pole Output
- Under voltage Lockout With Hysteresis
- Operating Frequency Up To 500KHz

#### **ORDERING INFORMATION**

| DEVICE  | Package Type | MARKING | Packing | Packing Qty |  |
|---------|--------------|---------|---------|-------------|--|
| UC2842N | DIP8         | UC2842  | TUBE    | 2000/box    |  |
| UC2843N | DIP8         | UC2843  | TUBE    | 2000/box    |  |
| UC2844N | DIP8         | UC2844  | TUBE    | 2000/box    |  |
| UC2845N | DIP8         | UC2845  | TUBE    | 2000/box    |  |
| UC2842D | SOP8         | UC2842  | REEL    | 2500/reel   |  |
| UC2843D | SOP8         | UC2843  | REEL    | 2500/reel   |  |
| UC2844D | SOP8         | UC2844  | REEL    | 2500/reel   |  |
| UC2845D | SOP8         | UC2845  | REEL    | 2500/reel   |  |
| UC3842N | DIP8         | UC3842  | TUBE    | 2000/box    |  |
| UC3843N | DIP8         | UC3843  | TUBE    | 2000/box    |  |
| UC3844N | DIP8         | UC3844  | TUBE    | 2000/box    |  |
| UC3845N | DIP8         | UC3845  | TUBE    | 2000/box    |  |
| UC3842D | SOP8         | UC3842  | REEL    | 2500/reel   |  |
| UC3843D | SOP8         | UC3843  | REEL    | 2500/reel   |  |
| UC3844D | SOP8         | UC3844  | REEL    | 2500/reel   |  |
| UC3845D | SOP8         | UC3845  | REEL    | 2500/reel   |  |

## **PIN CONNECTION**


(TOP VIEW)



### **PIN FUNCTION**

| Ν | FUNCTION                       | DESCRIPTION                                                                                                                                     |
|---|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | COMP                           | This pin is the Error Amplifier output and is made for loop compensation.                                                                       |
| 2 | V <sub>FB</sub>                | This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.   |
| 3 | I <sub>SENSE</sub>             | A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction. |
| 4 | R <sub>T</sub> /C <sub>T</sub> | The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor $R_T$ to $V_{ref}$ and capacitor $C_T$ to ground.  |
| 5 | GROUND                         | This pin is the combined control circuitry and power ground.                                                                                    |
| 6 | OUTPUT                         | This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sink by this pin.                                |
| 7 | V <sub>CC</sub>                | This pin is the positive supply of the integrated circuit.                                                                                      |
| 8 | V <sub>ref</sub>               | This is the reference output. It provides charging current for capacitor $C_T$ through resistor $R_T$ .                                         |

#### **BLOCK DIAGRAM**



#### Absolute Maximum Ratings

| Characteristic                                        | Symbol                  | Value       | Unit |  |
|-------------------------------------------------------|-------------------------|-------------|------|--|
| Supply Voltage (low impedance source)                 | V <sub>cc</sub>         | 30          | V    |  |
| Output Current                                        | Ι <sub>ο</sub>          | ±1          | A    |  |
| Input Voltage (Analog Inputs pins 2,3)                | Vı                      | -0.3 to 5.5 | V    |  |
| Error Amp Output Sink Current                         | I <sub>SINK (E.A)</sub> | 10          | mA   |  |
| Power Dissipation (T <sub>A</sub> =25 <sup>o</sup> C) | Po                      | 1           | W    |  |
| Storage Temperature Range                             | Tstg                    | -65 to150   | °C   |  |
| Lead Temperature (soldering 5 sec.)                   | TL                      | 260         | °C   |  |



| Characteristics               | Symbol                     | Test Condition                                       | Min  | Тур  | Max  | Unit |  |
|-------------------------------|----------------------------|------------------------------------------------------|------|------|------|------|--|
| Reference Section             |                            | •                                                    | •    |      |      |      |  |
| Reference Output Voltage      | V <sub>REF</sub>           | T <sub>J</sub> = 25°C, I <sub>REF</sub> = 1 mA       | 4.9  | 5.0  | 5.1  | V    |  |
| Line Regulation               | $\Delta V_{REF}$           | $12V \le V_{CC} \le 25 V$                            |      | 6.0  | 20   | mV   |  |
| Load Regulation               | $\Delta V_{REF}$           | $1 \text{ mA} \leq I_{\text{REF}} \leq 20 \text{mA}$ |      | 6.0  | 25   |      |  |
| Short Circuit Output Current  | I <sub>sc</sub>            | T <sub>A</sub> = 25°C                                |      | -100 | -180 | mA   |  |
| Oscillator Section            |                            | 1 ···                                                |      | 1    | 1    | 1    |  |
| Oscillation Frequency         | f                          | T <sub>J</sub> = 25°C                                | 47   | 52   | 57   | KHz  |  |
| Frequency Change with Voltage | $\Delta f / \Delta V_{CC}$ | $12V \le V_{CC} \le 25 V$                            |      | 0.05 | 1.0  | %    |  |
| Oscillator Amplitude          | V <sub>(OSC)</sub>         | (peak to peak)                                       |      | 1.6  |      | V    |  |
| Error Amplifier Section       | (000)                      |                                                      |      | 1    | 1    | 1    |  |
| Input Bias Current            | I <sub>BIAS</sub>          | V <sub>FB</sub> =3V                                  |      | -0.1 | -2   | μA   |  |
| Input Voltage                 | V <sub>I(E.A)</sub>        | V <sub>pin1</sub> = 2.5V                             | 2.42 | 2.5  | 2.58 | V    |  |
| Open Loop Voltage Gain        | A <sub>VOL</sub>           | $2V \le V_0 \le 4V$                                  | 65   | 90   |      | dB   |  |
| Unity Gain Bandwidth          | UGBW                       | $T_i=25^{\circ}C$ , Note 3                           | 0.5  | 0.6  |      | MHz  |  |
| Power Supply Rejection Ratio  | PSRR                       | $12V \le V_{CC} \le 25 V$                            | 60   | 70   |      | dB   |  |
| Output Sink Current           | I <sub>SINK</sub>          | V <sub>pin2</sub> = 2.7V, V <sub>pin1</sub> = 1.1V   | 2    | 7    |      | mA   |  |
| Output Source Current         | I <sub>SOURCE</sub>        | $V_{pin2} = 2.3V, V_{pin1} = 5V$                     | -0.5 | -1.0 |      | mA   |  |
| High Output Voltage           | V <sub>OH</sub>            | $V_{pin2}$ = 2.3V, $R_L$ = 15K $\Omega$ to GND       | 5.0  | 6.0  |      |      |  |
| Low Output Voltage            | V <sub>OL</sub>            | $V_{pin2} = 2.7V, R_L = 15K\Omega$ to PIN 8          |      | 0.8  | 1.1  | V    |  |
| Current Sense Section         |                            | price / e                                            |      | 1    | 1    | 1    |  |
| Gain                          | Gv                         | (Note 1 & 2)                                         | 2.85 | 3.0  | 3.15 | V/V  |  |
| Maximum Input Signal          | V <sub>I(MAX)</sub>        | $V_{pin1} = 5V$ (Note1)                              | 0.9  | 1.0  | 1.1  | V    |  |
| Supply Voltage Rejection      | SVR                        | $12V \le V_{CC} \le 25 V$ (Note 1)                   |      | 70   |      | dB   |  |
| Input Bias Current            | I <sub>BIAS</sub>          | V <sub>pin3</sub> = 3V                               |      | -3.0 | -10  | μA   |  |
| Output Section                |                            |                                                      |      |      |      |      |  |
| Low Output Voltage            | V <sub>OL</sub>            | I <sub>SINK</sub> = 20 mA                            |      | 0.08 | 0.4  | _    |  |
|                               |                            | I <sub>SINK</sub> = 200 mA                           |      | 1.4  | 2.2  |      |  |
| High Output Voltage           | V <sub>OH</sub>            | I <sub>SINK</sub> = 20 mA                            | 13   | 13.5 |      | V    |  |
|                               |                            | I <sub>SINK</sub> = 200 mA                           | 12   | 13.0 |      |      |  |
| Rise Time                     | t <sub>R</sub>             | T <sub>J</sub> = 25°C, C <sub>L</sub> = 1nF (Note 3) |      | 45   | 150  | _    |  |
| Fall Time                     | t⊨                         | $T_J = 25^{\circ}C, C_L = 1nF$ (Note 3)              |      | 35   | 150  | - nS |  |
| Undervoltage Lockout Section  |                            |                                                      |      |      |      |      |  |
| Start Theshold                | V <sub>TH(ST)</sub>        | UC2842/44,UC3842/44                                  | 14.5 | 16.0 | 17.5 | V    |  |
|                               |                            | UC2843/45,UC3843/45                                  | 7.8  | 8.4  | 9.0  |      |  |
| Min. Operating Voltage        | V <sub>OPR(min)</sub>      | UC2842/44,UC3842/44                                  | 8.5  | 10   | 11.5 | V    |  |
| (After Turn On)               |                            | UC2843/45,UC3843/45                                  | 7.0  | 7.6  | 8.2  | V    |  |
| PWM Section                   |                            | •                                                    | ·    | •    | •    |      |  |
| Max. Duty Cycle               | D <sub>(MAX)</sub>         | UC2842/43,UC3842/43                                  | 95   | 97   | 100  | %    |  |
|                               |                            | UC2844/45,UC3844/45                                  | 47   | 48   | 50   |      |  |
| Min. Duty Cycle               | D <sub>(MAX)</sub>         |                                                      |      |      | 0    |      |  |
| Total Standby Current         |                            |                                                      | ·    |      |      |      |  |
| Start–Up Current              | I <sub>ST</sub>            | UC3842/43/44/45                                      |      | 0.17 | 0.3  | mA   |  |
| Operating Supply Current      | I <sub>CC (OPR)</sub>      | V <sub>pin3</sub> = V <sub>pin2</sub> = 0V           |      | 13   | 17   |      |  |
| Zener Voltage                 | Vz                         | I <sub>cc</sub> =25 mA                               | 30   | 38   |      | V    |  |

#### Electrical characteristics (\* $V_{CC}$ =15V, R<sub>T</sub>=10k $\Omega$ , C<sub>T</sub>=3.3nF, T<sub>A</sub>=0<sup>o</sup>C to +70<sup>o</sup>C, unless otherwise specified)

\* Adjust  $V_{\text{CC}}$  above the start threshold before setting it to 15V.

Note 1: Parameter measured at trip point of latch with V<sub>pin2</sub>=0. Note 2: Gain defined as  $A=\Delta V_{pin1}/\Delta V_{pin3}$ ;  $0 \le V_{pin3} \le 0.8V$ . Note 3: These parameters, although guaranteed, are not 100% tested in production.



## **APPLICATION INFORMATION**

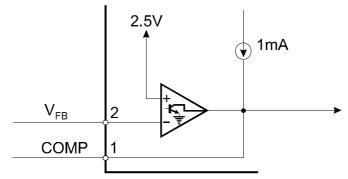



Figure 1. Error Amp Configuration

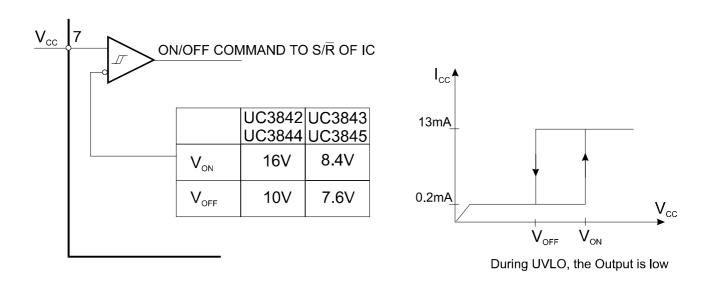
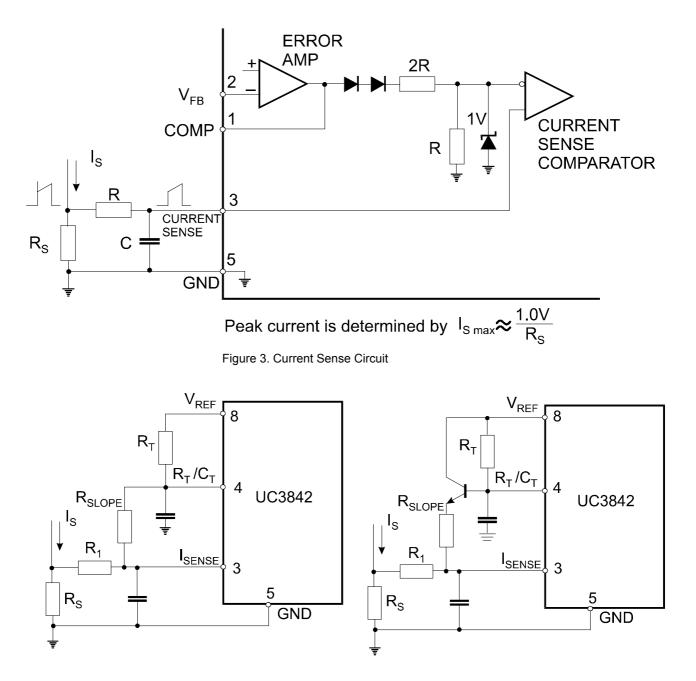
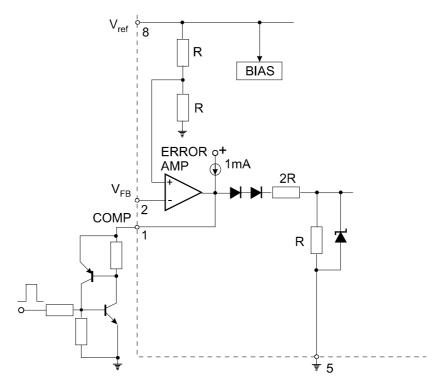
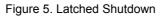
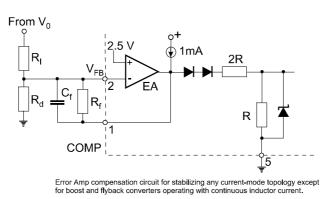
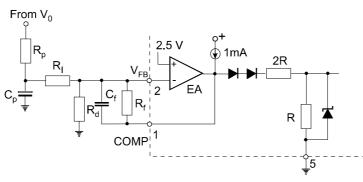



Figure 2. Under voltage Lockout





Figure 4. Slope Compensation Techniques



SCR must be selected for a holding current of less than 0.5mA. The simple two transistor circuit can be used in place of the SCR as shown.







 $\mbox{Error}$  Amp compensation circuit for stabilizing current-mode boost and flyback topologies operating with continuous inductor current.

Figure 6. Error Amplifier Compensation

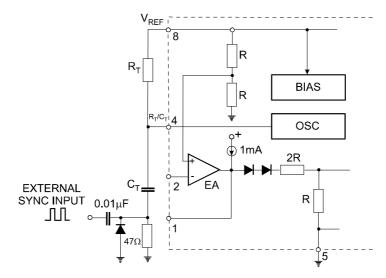



Figure 7. External Clock Synchronization

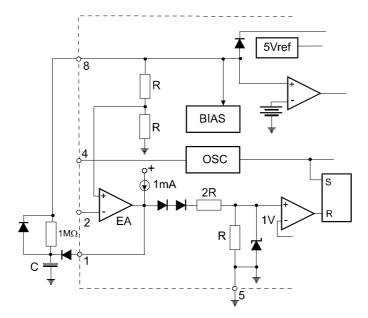



Figure 8. Soft-Start Circuit



## **TYPICAL PERFORMANCE CHARACTERISTICS**

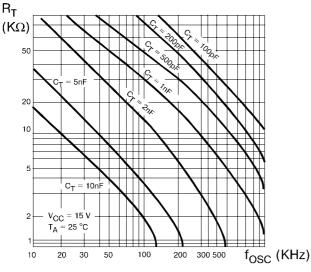



Figure 1. Timing Resistor vs. Oscillator Frequency

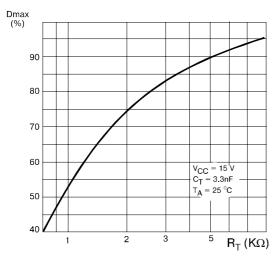
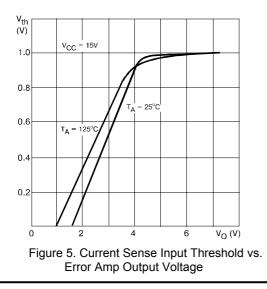
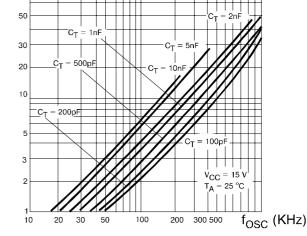
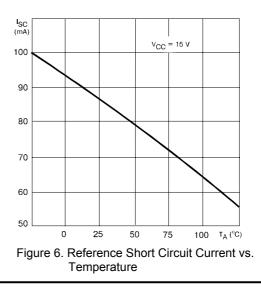





Figure 3. Maximum Output Duty Cycle vs. Timing Resistor (UC3842/43)






%









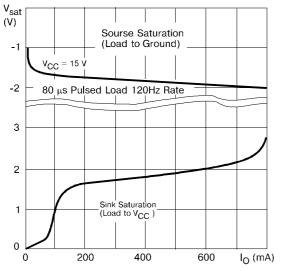
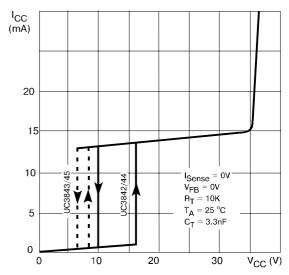




Figure 7. Output Saturation Voltage vs. Load Current  $T_A = 25^{\circ}C$ 





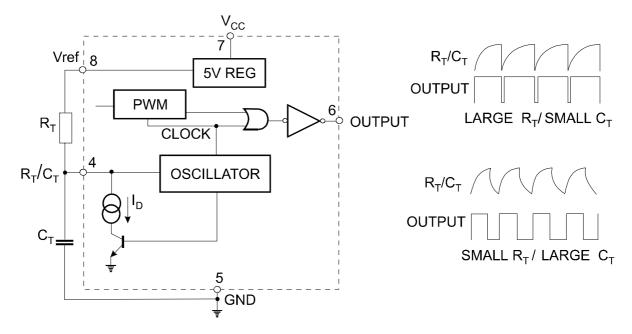
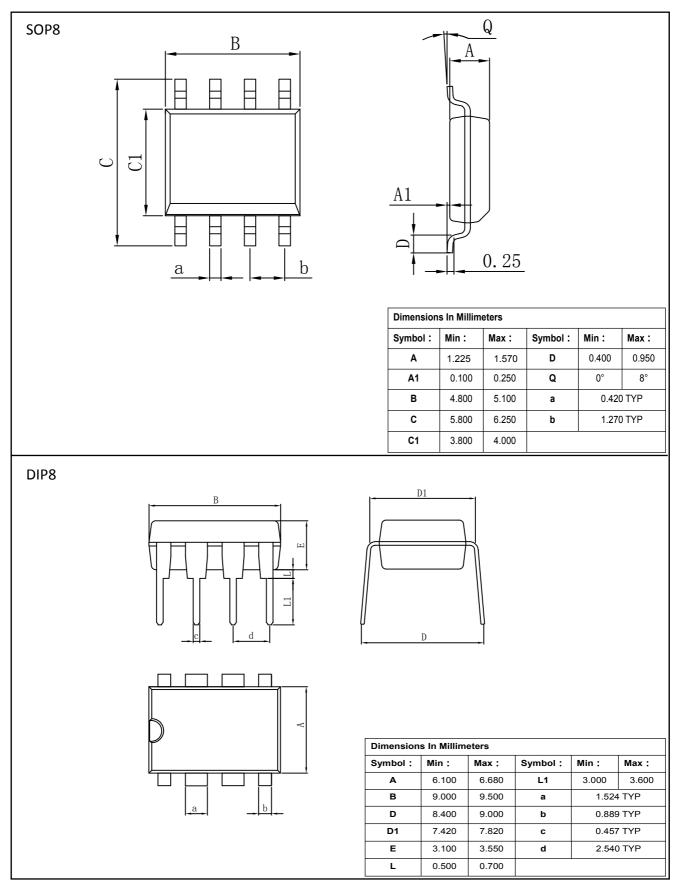




Figure 9. Oscillator and Output Waveforms



## PACKAGE

