$c>1$ us

File No.:E134517

File No.:B 0532860041

Features

- Multi contact arrangements: 2 Form C (2Z type), $1 \mathrm{NO}+1 \mathrm{NC}$ (HD1 type), 1NO+1NC (HD2 type)
- Forcibly guided contacts according to IEC 61810-3
- 8A switching capability
- High insulation capability ($1.2 / 50 \mu \mathrm{~s}): 10 \mathrm{kV}$ surge voltage between coil \& contacts and 6 kV between contact sets
- UL insulation system: Class F available

RoHS compliant

CONTACT DATA

Contact arrangement	2 Form C (2Z type) 1NO+1NC (HD1 type) 1NO+1NC (HD2 type)
Forcibly guided contacts	HD1, HD2 type: Type A 2Z type: Type B
Type (according to IEC61810-3)	AgSnO
Contact resistance ${ }^{1)}$	100ms max. (at 1A 6VDC)

Notes: 1) The data shown above are initial values.
2) Only 1 NO or NC is loaded in the test.

COIL DATA				at $23^{\circ} \mathrm{C}$
Nominal Voltage VDC	Pick-up Voltage VDC Max. $\left.{ }^{1}\right)$	Drop-out Voltage VDC Min. ${ }^{1}$	Max. Voltage VDC $\left.^{2}\right)$	Coil resistance Ω
5	3.80	0.5	7.5	$35.7 \times(1 \pm 10 \%)$
6	4.50	0.6	9.0	$51 \times(1 \pm 10 \%)$
9	6.80	0.9	13.5	$116 \times(1 \pm 10 \%)$
12	9.00	1.2	18	$206 \times(1 \pm 10 \%)$
15	11.3	1.5	22.5	$321 \times(1 \pm 10 \%)$
18	13.5	1.8	27	$483 \times(1 \pm 10 \%)$
21	15.8	2.1	31.5	$630 \times(1 \pm 10 \%)$
24	18.0	2.4	36	$823 \times(1 \pm 10 \%)$
36	27.0	3.6	54	$1851 \times(1 \pm 10 \%)$
40	30.0	4.0	60	$2286 \times(1 \pm 10 \%)$
$48^{2)}$	36.0	4.8	72	$3291 \times(1 \pm 15 \%)$
$60^{2)}$	45.0	6.0	90	$5142 \times(1 \pm 15 \%)$
$80^{2)}$	64.0	8.0	120	$9143 \times(1 \pm 15 \%)$
$110^{2)}$	82.5	11.0	165	$17285 \times(1 \pm 15 \%)$

Notes: 1) The data shown above are initial values.
2) Maximum voltage refers to the maximum voltage which relay coil could endure in a short period of time.
3) For products with rated voltage $\geqslant 48 \mathrm{~V}$, measures should be taken to prevent coil overvoltage in order to protect coil in test and application (eg. Connect diodes in parallel).

CHARACTERISTICS

Insulation resistance		1000M ${ }^{\text {(at 500VDC) }}$
Dielectric strength	Between coil \& contacts	4000VAC 1 min
	Between open contacts	1500VAC 1 min
	Between contact sets	3000VAC 1 min
Surge voltage	Between coil \& contacts	$10 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
	Between open contacts	2.5 kV (1.2 / 50 s)
	Between contact sets	6.0 kV (1.2 / 50 s)
Operate time (at rated voltage)		15 ms max .
Release time (at rated voltage)		10ms max.

	$\leqslant 60 \mathrm{~K}$ (Coil driving voltage:
Temperature rise (at rated voltage)	1.1 times Un, Contact current

-carrying: rated current, at $85^{\circ} \mathrm{C}$) $\mathrm{NO}: 10 \mathrm{~Hz}$ to 55 Hz 1.6 mm DA 55 Hz to $200 \mathrm{~Hz}, 98 \mathrm{~m} / \mathrm{s}^{2}$

Vibration resistance

Shock resistance	Functional	NO:98m/s ${ }^{2} \mathrm{NC:} 49 \mathrm{~m} / \mathrm{s}^{2}$
	Destructive	$980 \mathrm{~m} / \mathrm{s}^{2}$
Creepage distance	Between coil \& contacts	8 mm
Clearance	Between contacts	5.5 mm
distance	Between coil \& contacts contacts	8 mm
Humidity	5.5 mm	
Ambient temperature	5% to $85 \% \mathrm{RH}$	
Termination	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
Unit weight	PCB	
Construction	Approx. 20g	

Notes: 1) The data shown above are initial values.
2) UL insulation system: Class F, Class B.

COIL

Coil power	Approx. 700 mW

SAFETY APPROVAL RATINGS

UL/CUL	6A 250VAC / $277 \mathrm{VAC} / 30 \mathrm{VDC}$ at $70^{\circ} \mathrm{C}$
	NO: Pilot duty A300, at $70^{\circ} \mathrm{C}$
NC: Pilot duty B300, at $70^{\circ} \mathrm{C}$	
	NO: 8 A 250 VAC at $85^{\circ} \mathrm{C}$
TÜV	NC: 6A 250VAC at $85^{\circ} \mathrm{C}$
	NO: 3A 240VAC(AC-15) at $55^{\circ} \mathrm{C}$
	NC: 1.5 A 240 VAC(AC-15) at $55^{\circ} \mathrm{C}$

Notes: 1) All values unspecified are at room temperature.
2)Only typical loads are listed above. Other load specifications can be available upon request.

ORDERING INFORMATION

Notes: 1) If water cleaning is required after the relay is assembled on PCB, please contact us for suggestion about suitable parts.
2) For gold plated type, the min. switching current and min. switching voltage is 10 mA 5 VDC .if customers have special requirment of load. please contact us for suggestion about suitable parts.
3) Avoid contamination with organic solvents for the case using PC materials, otherwise chemical reactions may occur which may cause the shell to swell or crack
4) The customer special requirement express as special code after evaluating by Hongfa.

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT

Outline Dimensions

Pt

Wiring Diagram

PCB Layout
(Bottom view)

Outline Dimensions

Wiring Diagram

PCB Layout
(Bottom view)

HFA2/ $\square \square-H D 2 \square$ T $\square(\square \square \square)$

Outline Dimensions

Wiring Diagram

PCB Layout (Bottom view)

Remark: 1) In case of no tolerance shown in outline dimension: outline dimension $\leqslant 1 \mathrm{~mm}$, tolerance should be $\pm 0.2 \mathrm{~mm}$; outline dimension $>1 \mathrm{~mm}$ and $\leqslant 5 \mathrm{~mm}$, tolerance should be $\pm 0.3 \mathrm{~mm}$; outline dimension $>5 \mathrm{~mm}$, tolerance should be $\pm 0.4 \mathrm{~mm}$.
2) The tolerance without indicating for PCB layout is always $\pm 0.1 \mathrm{~mm}$.

CHARACTERISTIC CURVES

COIL TEMPERATUE RISE

ELECTRICAL ENDURANCE

Test conditions:
1NO, Resistive load, 250VAC,
Room temp., 1s on 9s off.
The data shown above are typical values.

Relay Sockets

LOAD BREAKING CAPACITY

INDUCTIVE DURABILITY CURVE

Test conditions:
Connected to IEC61810-1 Appendix B Table
B. 3 method test, at room temperature, 1 NO , 1 s on and 9 s off.

Features

- the insulation resistance is $1000 \mathrm{M} \Omega$
- Three mounting types are available: PCB, screw mounting and DIN rail mounting
- With finger protection device
- Many kinds of plug-in modules are available with the function of energizing indication and wiring protection
- Environmental friendly product (RoHS compliant)

CHARACTERISTICS

Type	Nominal Voltage	Nominal Current	Ambient Temperature	Dielectric Strength S.	Screw Torque	Wire Strip Length
$14 F F-2 Z-A 1$	250 VAC	10 A	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5000 VAC	-	-
$14 \mathrm{FF}-2 Z-\mathrm{C} 2$	250 VAC	10 A	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5000 VAC	$0.6 \mathrm{~N} \cdot \mathrm{~m}$	7 mm

0	ONS, WIRING DIAGRAM	PC BOARD LAYOU	Unit: mm
Socket	Outline Dimensions	Wiring Diagram / PCB Layout	Components Available
14FF-2Z-A1 PCB terminal, PCB or Screw mounting			metallic retainer 14FF-H3 remarks:the dielectric strength can reach 1500VAC that sockets mounted 14FF-H3
14FF-2Z-C2(767) Screw terminal DIN rail or Screw mounting With finger protection device			plastic retainer 14FF-H6 marker 14FF-M1 plug-in module HFAA to HFHU*

Notes: *Please refer to the product datasheet if plug-in module is required.

Retainer

14FF-H3 (Metallic retainer)

14FF-H6 (Plastic retainer)

Marker

14FF-M1

Things to be noticed when selecting sockets:

1. Please choose suitable relay socket according to the actual mounting environment, relay contact poles and terminal layout. If there is any query on selection, please contact Hongfa for the technical service
2. Socket which can be mounted with markers is furnished with a marker; as for other related components, they should be selected separately. Please do give clear indication of the types of relay sockets and related components you choose while placing order
3. The above is only an example of typical socket and related component type which is suitable to HF115FP relay. If you have any special requirements please contact us.
4. Main outline dimension, outline dimension>50mm ,tolerance should be $\pm 1 \mathrm{~mm} ; 20 \mathrm{~mm}<$ outline dimension $\leqslant 50 \mathrm{~mm}$, tolerance should be $\pm 0.5 \mathrm{~mm}$ $5 \mathrm{~mm}<$ outline dimension $\leqslant 20 \mathrm{~mm}$, tolerance should be $\pm 0.4 \mathrm{~mm}$; outline dimension $\leqslant 5 \mathrm{~mm}$, tolerance should be $\pm 0.3 \mathrm{~mm}$.
5. DIN rail mounting: recommend to use standard rail $35 \times 7.5 \times 1 \mathrm{~mm}, 35 \times 15 \times 1 \mathrm{~mm}$.

[^0]© Xiamen Hongfa Electroacoustic Co., Ltd. All rights of Hongfa are reserved

[^0]: Disclaimer
 The specification is for reference only. See to "Terminology and Guidelines" for more information. Specifications subject to change without notice. We could not evaluate all the performance and all the parameters for every possible application. Thus the user should be in a right position to choose the suitable product for their own application. If there is any query, please contact Hongfa for the technical service. However, it is the user's responsibility to determine which product should be used only.

