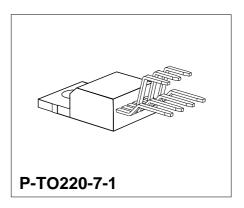
SIEMENS


Intelligent Double Low-Side Switch 2 × 2 A

TLE 4211

Bipolar IC

Features

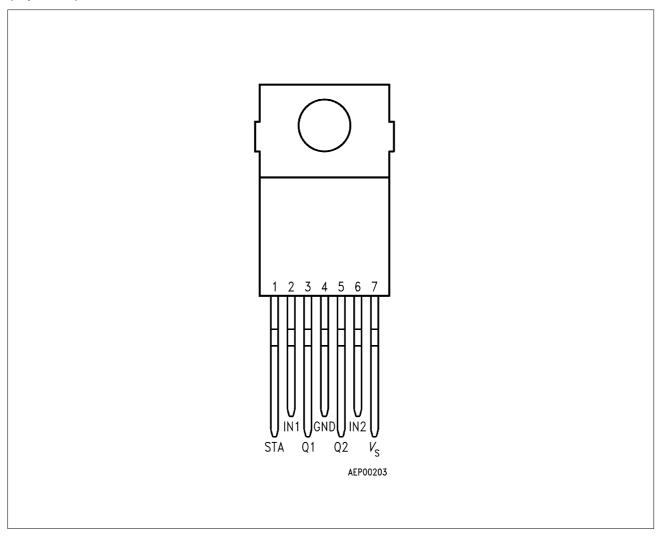
- Double low-side switch, 2 x 2 A
- Power limitation
- Overtemperature shutdown
- Status monitoring
- Shorted-load protection
- Reverse polarity protection
- Integrated clamp Z-Diodes
- Voltage proof up to 70 V
- Temperature range 40 to 125 °C

Туре	Ordering Code	Package
TLE 4211	Q67000-A8118	P-TO220-7-1

Application

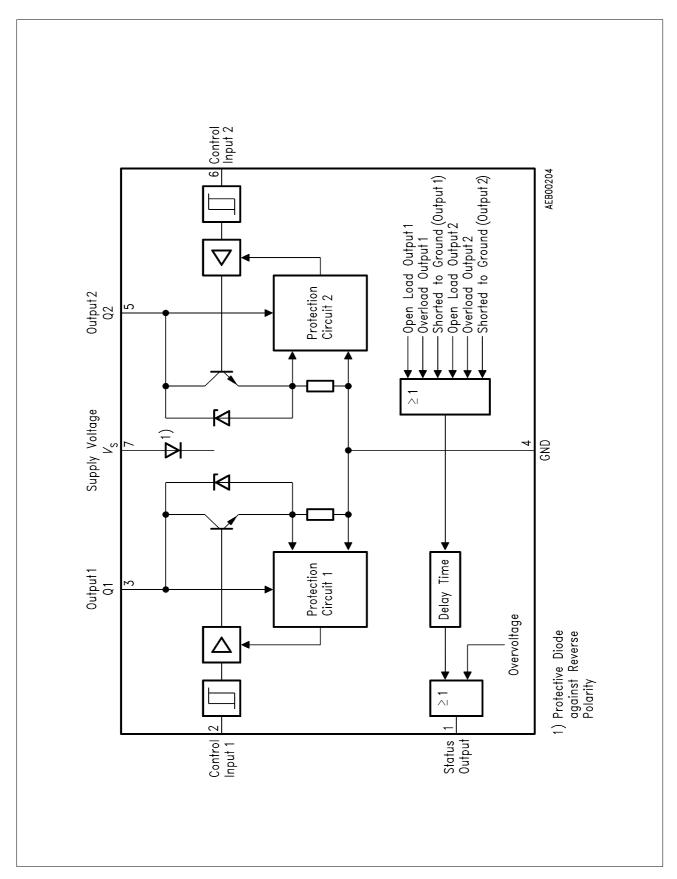
Applications in automotive electronics require intelligent power switches activated by logic signals, which are shorted-load protected and provide error feedback.

The IC contains two of these power switches (low-side switch). In case of inductive loads the integrated power Z-diodes clamp the discharging voltage.


With TTL signals at the control inputs (active low) both switches can be activated independently of one another. If one of the inputs is not in use, it must be applied to high potential.

The status output (open collector) signals the following malfunctions through low potential:

- Overload.
- Open load,
- Output shorted to ground,
- Overvoltage.


Pin Configuration

(top view)

Pin Definitions and Functions

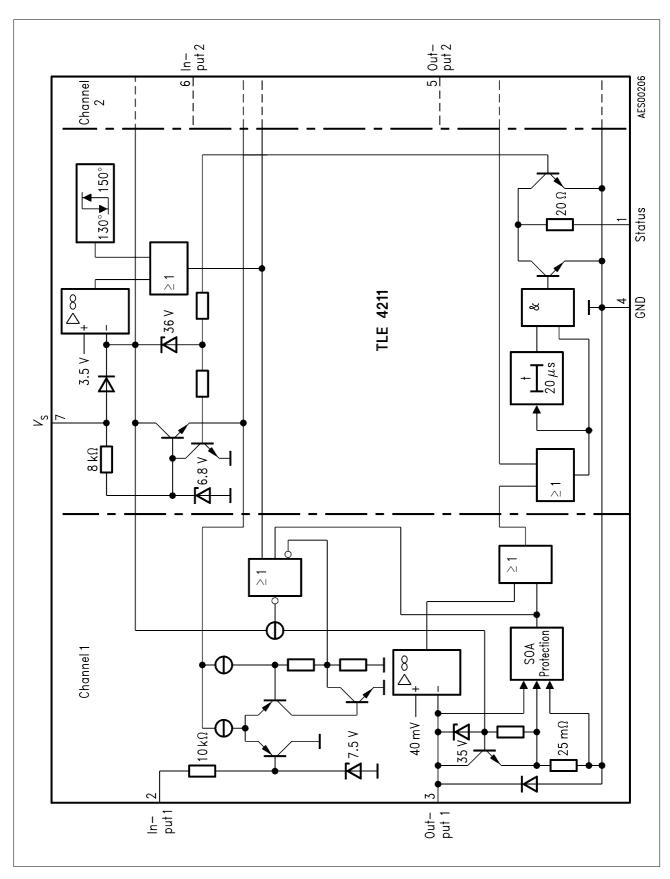
Pin No.	Symbol	Function
1	STA	Status output (open collector) for both outputs; indicates overload, open load and shorted load to ground as well as overvoltage at pin 7. In case of malfunction the status output is switched to low after a delay time (except overvoltage).
2	IN1	Control input 1 (TTL-compatible) activates output transistor 1 in case of low-potential.
3	Q1	Output 1 Shorted-load protected, open collector output with 36 V clamp Z-diode to ground.
4	GND	Ground Wiring must be designed for a max. short-circuit current (2 x 3.5 A).
5	Q2	Output 2 Shorted-load protected, open collector output with 36 V clamp Z-diode to ground.
6	IN2	Control input 2 (TTL-compatible) activates output transistor 2 in case of low-potential.
7	$V_{\mathbb{S}}$	Supply voltage In case of overvoltage at this pin large sections of the circuit are deactivated. The status output indicates the malfunction without delay time.

Block Diagram

Circuit Description

Input Circuits

The control inputs comprise TTL-compatible Schmitt triggers with hysteresis. Driven by these stages the inverting buffer amplifiers convert the logic signal for driving the NPN power transistors.


Switching Stages

The output stages comprise NPN power transistors with open collectors. Since the protective circuit allocated to each stage limits the power dissipation, the outputs are shorted-load protected to the supply voltage throughout the entire operating range. Positive voltage peaks, which occur during the switching of inductive loads, are limited by the integrated clamp Z-diodes.

Monitoring and Protective Functions

The outputs are monitored for open load, overload, and shorted output to ground (**see table below**). In addition, large sections of the circuit are de-activated in case of excessive supply voltages $V_{\rm S}$. Linked via OR gate the information regarding these malfunctions effects the status output (open collector, active low). An internally determined delay time applied to all malfunctions but overvoltage prevents the output of messages in case of short-term malfunctions. Furthermore, a temperature protection circuit prevents thermal overload. An integrated reverse diode protects the supply voltage $V_{\rm S}$ against reverse polarities. Similarly the load circuit is protected against reverse polarities within the limits established by the maximum ratings (no shorted load at the same time!). At supply voltages below the operating range an undervoltage detector ensures that neither the status nor the outputs are activated.

Status Output (L = Error)									
	Undervoltage	Operat	ing Range	Overvoltage					
		$V_1 = L$ (active)	$V_{\rm I}$ = H (passive)						
Normal function	Н	Н	Н	L					
Overload	Н	L	Н	L					
Open load	Н	L	Н	L					
Shorted output to ground	Н	L	L	L					

Circuit Diagram

Absolute Maximum Ratings

 $T_{\rm j}$ = - 40 to 150 °C

Parameter	Symbol	Limit Values		Unit
		min.	max.	

Voltages

Supply voltage (pin 7) 1)	V_{S}	- 45	45	V
Supply voltage (pin 7) $t \le 500 \text{ ms}$	V_{S}	_	70	V
Input voltage (pin 2; pin 6)	V_1	-5	45	V
Output voltage (pin 1)	V_{O}	- 0.3	45	V

Currents

Switching current (pin 3; pin 5) Current with reverse polarity (pin 3; pin 5)	$I_{Q} \ I_{Q}$	limited – 2.2	internally –	Α
$T_{\rm C} \le 85 ^{\circ}{\rm C}$ Output current (pin 1)	I_{Q}	_	10	mA
Max. current at inductive load	I_{Q}	_	see Diagram	
Junction temperature Storage temperature	$T_{ m j} \ T_{ m stg}$	_ _ 50	150 150	°C

Operating Range

Supply voltage	V_{S}	5.6 ²⁾	20	V
Supply voltage slew rate	$\mathrm{d}V_\mathrm{S}/\mathrm{d}V$	– 1	1	V/µs
Case temperature	T_{C}	- 40	125	°C
Thermal resistance junction to case junction to ambient	$R_{th\ JC} \ R_{th\ JA}$		4 65	K/W K/W

Refer to monitoring and protective functions Lower limit = 4.6 V, if previously $V_{\rm S}$ greater than 5.6 V (turn-on hysteresis)

Characteristics

 $V_{\rm S}$ = 6 to 18 V and $T_{\rm j}$ = - 40 to 125 $^{\circ}{\rm C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

General Characteristics

Quiescent current Supply voltage	$I_{\mathbb{S}}$ $I_{\mathbb{S}}$		3.5 100	10 180	mA mA	$V_{I} = V_{I} > V_{IH}$ $V_{I} = V_{I} < V_{IL}$
Supply overvoltage shutdown threshold	V_{SO}	34	36	42	V	$I_{\rm O}$ = 5 mA; $V_{\rm O}$ < 0.4 V
Open load error threshold voltage	V_{QU}	_	40	_	mV	$I_{\rm O} = 5$ mA; $V_{\rm O} < 0.4$ V
Open load error threshold current	I_{QU}	_	50	120	mA	$V_{\mathrm{Q}} = V_{\mathrm{QU}}$
Open load error threshold current for both channels active	I_{QU}	_	_	250	mA	$V_{\mathrm{Q1}} = V_{\mathrm{Q2}} = V_{\mathrm{QU}}$

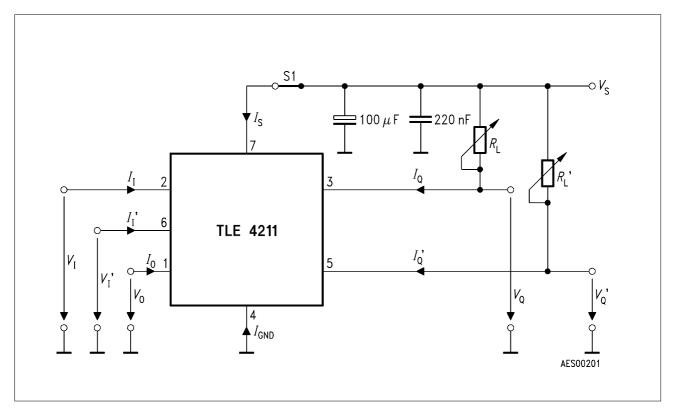
Logic

Control input H-input voltage L-input voltage	$egin{array}{c} V_{IH} \ V_{IL} \end{array}$	- 0.7	1.7 1.1	2.4	V V	_ _
Hysteresis of input voltage	ΔV_{I}	_	0.6	_	V	_
H-input current L-input current	I _{IH} – I _{IL}			10 10	μA μA	$V_{\rm I}$ = 5 V $V_{\rm I}$ = 0.5 V
Status output (open coll.) L-saturation voltage	V_{OSat}	_	_	0.4	V	$I_{\rm O}$ = 5 mA
Status delay time	t_{dS}	12	20	30	μs	1)

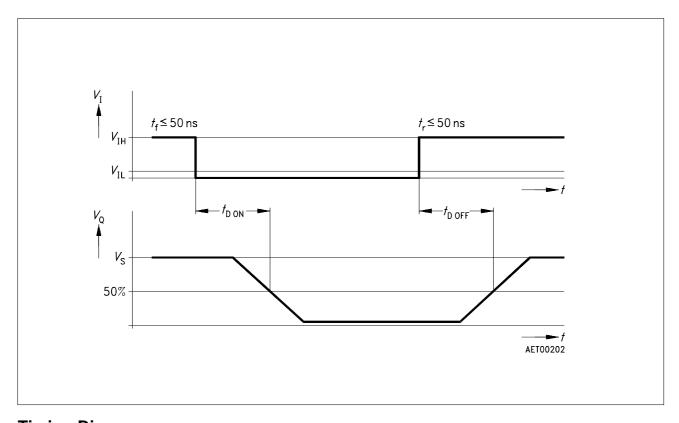
Period from the beginning of the disturbance at one channel (exception: overvoltage) until the 50 % value of the status switching edge is reached.

Characteristics (cont'd)

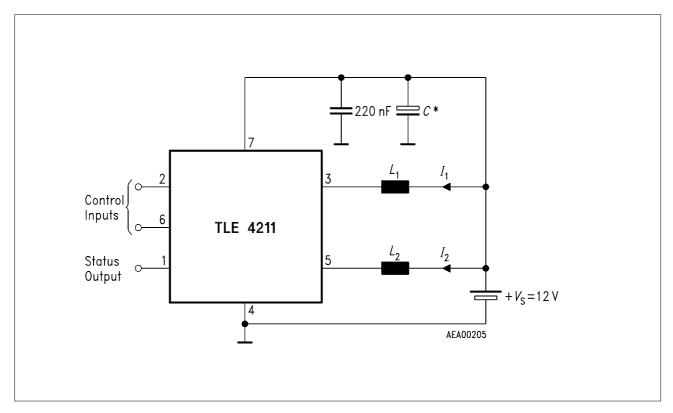
 $V_{\rm S}$ = 6 to 18 V and $T_{\rm j}$ = – 40 to 125 $^{\circ}{\rm C}$


Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Power Output

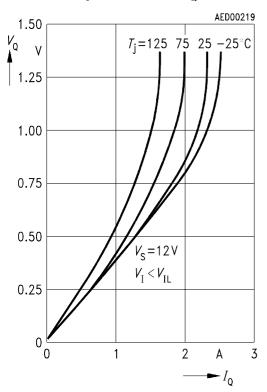

Saturation voltage	V_{QSat}	_	0.6	0.8	V	$I_{\rm Q} =$ 1.6 A; $V_{\rm I} < V_{\rm IL}$; $T_{\rm j} =$ 25 °C
Leakage current	I_{Q}	_	_	300	μΑ	$V_{\rm Q}$ = 6 V; $V_{\rm I}$ > $V_{\rm IH}$
Switch-ON time Switch-OFF time	$t_{ extsf{D ON}}$ $t_{ extsf{D OFF}}$		0.5 2.5	5 10	μs μs	see Timing Diagram; $I_{\rm Q}=$ 1 A
Output voltage Negative clamp	$-V_{QF}$	_	1.4	1.8	V	$I_{\rm Q} = -2.0 \; {\rm A}$

Power Clamp Diode ($V_S = 42 \text{ V}; S_1 \text{ open}$)

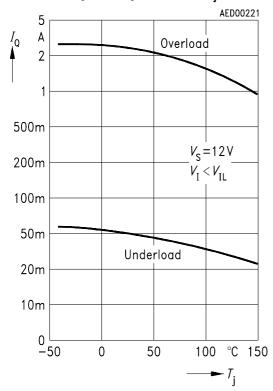

Output voltage positive clamp	V_{QZ}	34	36	40	V	$I_{\rm Q} = 0.1 {\rm A}$
Serial resistance	r_{z}	_	2	_	Ω	0 A < I _Q < 2 A

Test Circuit

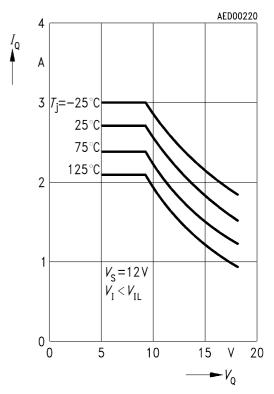
Timing Diagram

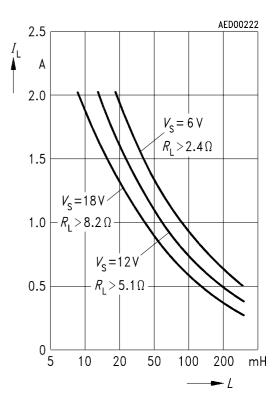


Application Circuit


 C^* is to be dimensioned such that e.g. in case of a battery voltage failure the maximum ratings of the IC are not exceeded by the recirculation energy L_1 , L_2 .

SIEMENS


Output Voltage V_{Q} versus Output Current I_{Q}


Status Signal Threshold versus Chip Temperature T_i

Shorted Load Current I_{Q0} versus Output Voltage V_{Q}

Maximum Load Current I_L versus Load Inductance L

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm