CUSTOMER:

DATE:

REV : REV 2.0 .

SPECIFICATIONS FOR APPROVAL

Top View Type White SMD LED

MODEL NAME: LEMWS51R90MZ3A00

APPROVAL	REMARK	APPENDIX

CHECKED	APPROVED
13.11.06	11.06
C. Y. KIM	B.K. MIN.
Ash	
	Control of the last of the las

CONTENTS

1. Features	 2
2. Outline Dimensions	 2
3. Applications	 3
4. Absolute Maximum Ratings	 3
5. Electro-Optical Characteristics	 3~4
6. Bin Structures	 4~5
7. Typical Characteristic Curves	 6~7
8. Reliability Test Items and Conditions	 8
9. Packing and Labeling of Products	 9~12
10. Cautions on Use	 13~16
11 Disclaimers	 16

1. Features

- Lighting Color: White

- Lead Frame Type LED Package : 5.1×5.2×1.0 (L×W×H) [Unit : mm]

- Viewing Angle : 120 $^{\circ}$

- Chip Material : InGaN

- Soldering Methods : Reflow Soldering

- Taping: 12 mm conductive black carrier tape & antistatic clear cover tape.

2,000pcs/reel, Φ203 mm wheel

2. Outline Dimensions

(Unit:mm) 2.98 2.12 1.00 5.20 1 5.10 Recommendable Soldering Pattern 5.10 (for Reflow Soldering) **Internal Circuit** Pad Configuration 1 Anode Pad Cathode 2 Cathode Pad (1) (2)

Tolerances unless otherwise mentioned are \pm 0.10 mm

3. Applications

- Interior and Exterior Illumination

4. Absolute Maximum Ratings

(Ta=25°C)

Item	Symbol	Rating	Unit
Forward Current	If	200	mA
Pulse Forward Current*1)	Ifp	260	mA
Operating Temperature	Topr	-40 ~ +85	°C
Storage Temperature	Tstg	-40 ~ +100	°C
Junction Temperature	Tj	120	°C
Soldering Temperature	JEDEC-J-STD-020D		
ESD Classification	Class 2 (JESD22-A114)		

^{*1)} Pulse width ≤10ms and duty cycle ≤10%

5. Electro - Optical Characteristics

(Ta=25 °C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	Vf	If = 65mA	2.75	2.90	3.05	V
Luminous Flux	Фv	If = 65mA	20.0	23.0	25.0	lm
Luminous Intensity	lv	If = 65mA		-		cd
Color Coordinate	Cx / Cy	If = 65mA		fer to '6. Structure		-
Viewing Angle	2Θ1/2	If = 65mA	-	120	-	deg
Color Rendering Index (CRI)	Ra	If = 65mA	90	-	-	-
Thermal Resistance, Junction to Solder Point	Rth j-s	If = 65mA	-	15	-	°C/W
Typical Temperature Coefficient of Forward Voltage*1)	ΔVf / ΔTj	If = 65mA	-1.5	-	-3.0	mV/° C

^{*1)} Measured at Ta between 25 °C and 85 °C.

^{**} Operating the LED beyond the listed maximum ratings may affect device reliability and cause permanent damage. These or any other conditions beyond those indicated under recommended operating conditions are not implied. The exposure to the absolute maximum rated conditions may affect device reliability.

^{*} The LEDs are not designed to be driven in reverse bias.

^{*} These values are measured by the LG Innotek optical spectrum analyzer within the following tolerances. Luminous Flux (Φv): $\pm 7\%$, Forward Voltage (Vf): $\pm 0.1V$, Color Value: ± 0.005 , CRI Value: ± 2 ,

Although all LEDs are tested by LG Innotek equipment, some values may vary slightly depending on the conditions of the test equipment.

5. Electro - Optical Characteristics

(Ta=25 °C)

If (mA)	Vf (V)	Power (W)	Фv (lm)	lm/W
30	2.76	0.082	10.9	132
60	2.87	0.172	21.3	123
65(Typ.)	2.90	0.188	23.0	122
90	2.97	0.267	31.0	116
120	3.05	0.366	40.4	110
150	3.12	0.468	49.2	105
180	3.16	0.568	57.7	101
200	3.22	0.644	63.0	97

[※] Φv values are for representative references only.

6. Bin Structures

Forward Voltage Bins (@65mA)

Bin	Vf (V)			
	Min.	Max.		
8B	2.75	2.80		
9A	2.80	2.85		
9B	2.85	2.90		
0A	2.90	2.95		
0B	2.95	3.00		
1A	3.00	3.05		

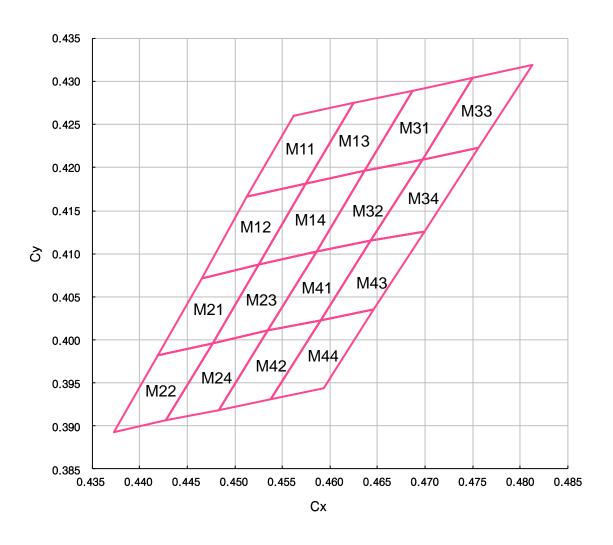
■ Luminous Flux Bins (@65mA)

Bin	Φv (lm)		
	Min.	Max.	
R1	20.0	25.0	

■ CRI Bin (@65mA)

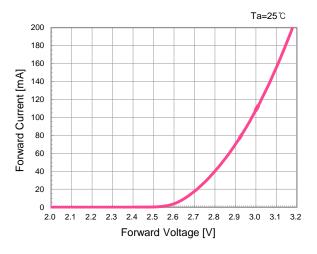
Bin	CRI		
	Min.	Max.	
90	90	-	

※ Bin structure: Please refer to the following example.

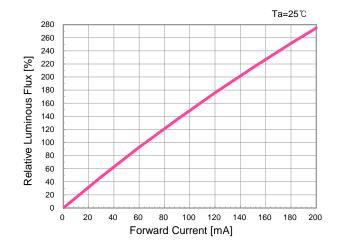

Bin Code: R1-M11-0A

($\Phi v Bin = R1$, Color Bin = M11, Vf Bin = 0A)

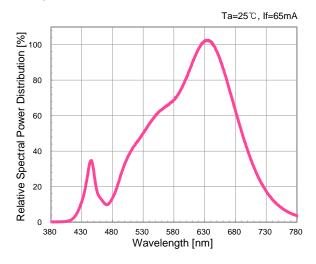
Color Bins (@65mA)

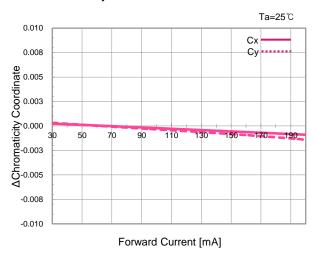

Bin	Сх	Су	Bin	Сх	Су
	0.4562	0.4260		0.4687	0.4289
M11	0.4625	0.4275	M31	0.4750	0.4304
IVIII	0.4575	0.4181	IVIST	0.4697	0.4209
	0.4513	0.4166		0.4637	0.4196
	0.4513	0.4166		0.4637	0.4196
M12	0.4575	0.4181	M32	0.4697	0.4209
IVIIZ	0.4525	0.4087	IVIOZ	0.4643	0.4115
	0.4465	0.4071		0.4586	0.4103
	0.4625	0.4275		0.4750	0.4304
M13	0.4687	0.4289	M33	0.4813	0.4319
IVIIO	0.4637	0.4196	IVIOO	0.4756	0.4223
	0.4575	0.4181		0.4697	0.4209
	0.4575	0.4181		0.4697	0.4209
M14	0.4637	0.4196	M34	0.4756	0.4223
10114	0.4586	0.4103		0.4700	0.4126
	0.4525	0.4087		0.4643	0.4115
	0.4465	0.4071		0.4586	0.4103
M21	0.4525	0.4087	M41	0.4643	0.4115
IVIZ I	0.4477	0.3996	10141	0.4590	0.4023
	0.4419	0.3982		0.4535	0.4011
	0.4419	0.3982		0.4535	0.4011
M22	0.4477	0.3996	M42	0.4590	0.4023
IVIZZ	0.4428	0.3906	10142	0.4538	0.3931
	0.4373	0.3893		0.4483	0.3918
	0.4525	0.4087		0.4643	0.4115
M23	0.4586	0.4103	M43	0.4700	0.4126
IVIZO	0.4535	0.4011	IVITO	0.4646	0.4035
	0.4477	0.3996		0.4590	0.4023
	0.4477	0.3996		0.4590	0.4023
M24	0.4535	0.4011	M44	0.4646	0.4035
IVIZ	0.4483	0.3918	IVITT	0.4593	0.3944
	0.4428	0.3906		0.4538	0.3931

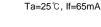
Color Bins Structure

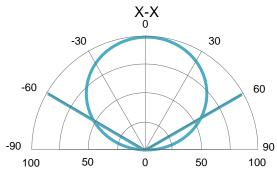


7. Typical Characteristic Curves

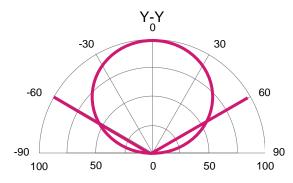

Forward Current vs. Forward Voltage


■ Relative Luminous Flux vs. Forward Current

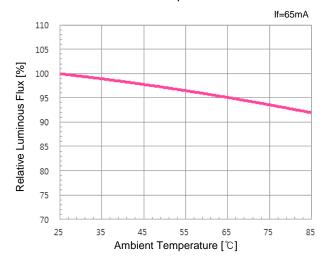

Spectrum



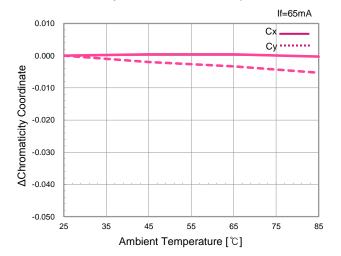
Chromaticity Coordinate vs. Forward Current



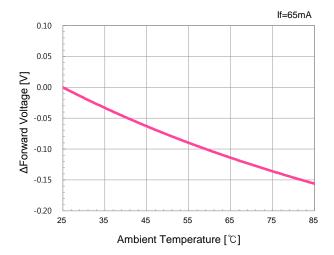
Radiation Characteristics

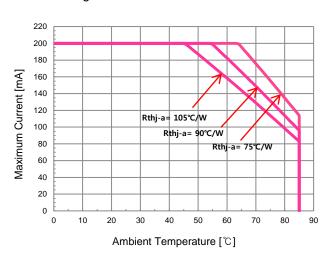


Ta=25℃, If=65mA



7. Typical Characteristic Curves


■ Luminous Flux vs. Temperature


Chromaticity Coordinate vs. Temperature

■ Forward Voltage vs. Temperature

Derating Curve

* The ambient temperature values for each graph are obtained with LG Innotek equipment.

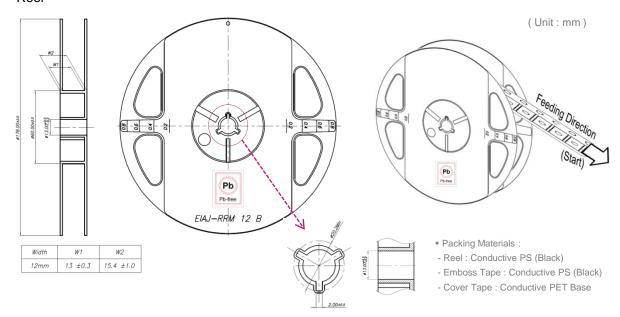
8. Reliability Test Items and Conditions

8-1. Failure Criteria

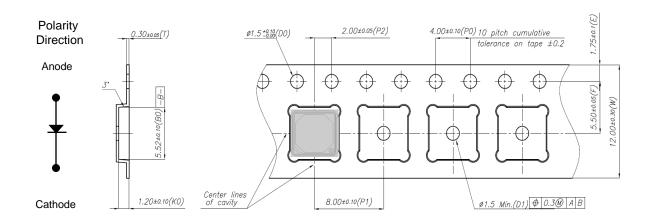
Items	Symbol	Test Conditions	Criteria	
items	Gymbol	1 est conditions	Min.	Max.
Forward Voltage	Vf	If = 65mA	-	Initial Value × 1.1
Luminous Flux	Ф٧	If = 65mA	Initial Value × 0.7	-

8-2. Reliability Tests

No	Items	Test Conditions	Test Hours /Cycles
1	Room Temperature Operating Life (RTOL)	Ta = 25 °C, If = 200mA	1,000 Hours
2	Wet High Temperature Operating Life (WHTOL)	Ta = 60°C, RH = 90%, If = 200mA	1,000 Hours
3	High Temperature Operating Life (HTOL)	Ta = 85°C, If = 200mA	1,000 Hours
4	Low Temperature Operating Life (LTOL)	Ta = -40℃, If = 200mA	1,000 Hours
5	High Temperature Storage Life (HTSL)	Ta = 100 ℃	1,000 Hours
6	Low Temperature Storage Life (LTSL)	Ta = -40 °C	1,000 Hours
7	Wet High Temperature Storage Life (WHTSL)	Ta = 85 ℃, RH = 85%	1,000 Hours
8	Thermal Shock (TMSK)	100℃ ~ -40℃ Dwell : 30 min., Transfer : 10 sec.	100 Cycles
9	Moisture Sensitivity Level (MSL)	Tsld = 260° C (Pre treatment 60° C, 60° C, 168° hours)	3 Times
10	Vibration	100~2000~100Hz Sweep 4min. 200m/s², 3 directions	48 Minutes


[※] All samples are tested using LG Innotek Standard Metal PCB (25x25x1.6 mm³(L×W×H)) except MSL test .

^{*} All samples must pass each test item and all test items must be satisfied.


9. Packing and Labeling of Products

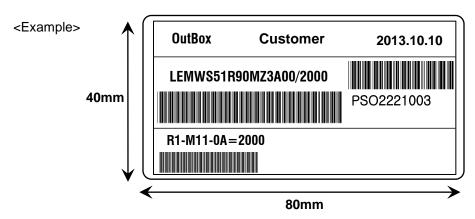
9-1. Taping Outline Dimensions

■ Reel

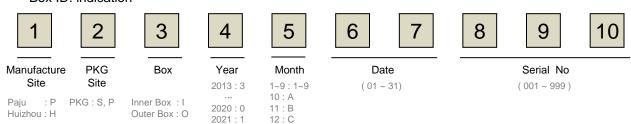
Tape

Taping Arrangement

9. Packing and Labeling of Products

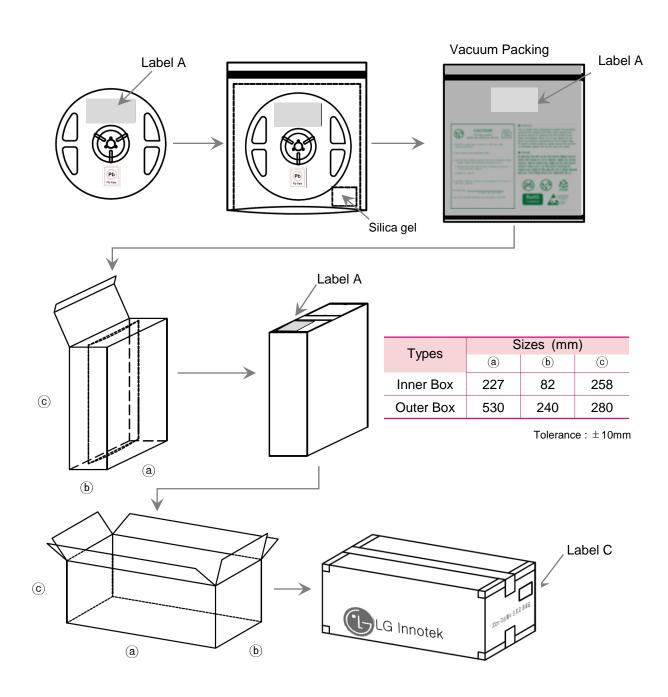

9-2. Label Structure

*. Label A Specifying Model Name, Rank, Rack, Quantity and Run number Lot ID: PPWS03R063M000101 2C11001-A003 <Example> Ver.: 1.00 MES ID: LA8HM Run No: F00401-4517 40mm RANK: R1-M1-0A Rack No: C-107 LA8HM=R1-M11-0A=2000=F00401-4517=C-107 80mm Run No. indication 1 10 Manufacture Manufacture Manufacture Manufacture Code TH# Serial No Site Year Month date 1~9:1~9 10:A 11:B 12:C 2013:3 (00 ~ 99) Paju (01~31) $(00 \sim ZZ)$ 2020 : 0 2021 : 1 Huizhou: 9


9. Packing and Labeling of Products

9-2. Label Structure

**. Label C
Specifying Customer, Date, Model Name, Quantity, Customer Part no, Outbox ID, Rank/Rank Q'ty


■ Box ID. indication

9. Packing and Labeling of Products

9-3. Packing Structures

Reeled products are packed in a sealed-off and moisture-proof aluminum bag with desiccants (silica gel). Max four aluminum bags are packed in an inner box and six inner boxes are packed in an outer box.

10. Cautions on Use

10-1. Moisture-Proof Package

- -. The moisture in the SMD package may vaporize and expand during soldering.
- -. The moisture can damage the optical characteristics of the LEDs due to the encapsulation.

10-2. During Storage

Conditions		Temperature	Humidity	Time
Storage	Before Opening Aluminum Bag	5℃~30℃	< 50%RH	Within 1 Year from the Delivery Date
	After Opening Aluminum Bag	5℃~30℃	< 60%RH	≤ 672 hours
Baking		65 ± 5℃	< 10%RH	10 ~ 24 hours

10-3. During Usage

- -. The LED should avoid direct contact with hazardous materials such as sulfur, chlorine, phthalate, etc.
- -. The metal parts on the LED can rust when exposed to corrosive gases. Therefore, exposure to corrosive gases must be avoided during operation and storage.
- -. The silver-plated metal parts also can be affected not only by the corrosive gases emitted inside of the end-products but by the gases penetrated from outside environment.
- -. Extreme environments such as sudden ambient temperature changes or high humidity that can cause condensation must be avoided.

10-4. Cleaning

- -. Do not use brushes for cleaning or organic solvents (i.e. Acetone, TCE, etc..) for washing as they may damage the resin of the LEDs.
- -. Isopropyl Alcohol(IPA) is the recommended solvent for cleaning the LEDs under the following conditions.
 - Cleaning Condition : IPA, 25 °C max. × 60sec max.
- -. Ultrasonic cleaning is not recommended.
- -. Pretests should be conducted with the actual cleaning process to validate that the process will not damage the LEDs.

10. Cautions on Use

10-5. Thermal Management

- -. The thermal design of the end product must be seriously considered, particularly at the beginning of the system design process.
- -. The generation of heat is greatly impacted by the input power, the thermal resistance of the circuit boards and the density of the LED array combined with other components.

10-6. Static Electricity

- Wristbands and anti-electrostatic gloves are strongly recommended and all devices, equipment and machinery must be properly grounded when handling the LEDs, which are sensitive against static electricity and surge.
- -. Precautions are to be taken against surge voltage to the equipment that mounts the LEDs.
- -. Unusual characteristics such as significant increase of current leakage, decrease of turn-on voltage, or non-operation at a low current can occur when the LED is damaged.

10-7. Recommended Circuit

- -. The current through each LED must not exceed the absolute maximum rating when designing the circuits.
- -. In general, there can be various forward voltages for LEDs. Different forward voltages in parallel via a single resistor can result in different forward currents to each LED, which also can output different luminous flux values. In the worst case, the currents can exceed the absolute maximum ratings which can stress the LEDs. Matrix circuit with a single resistor for each LED is recommended to avoid the luminous flux fluctuations.

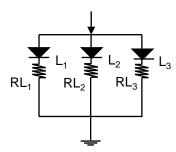


Fig.1 Recommended Circuit in Parallel Mode : Separate resistors must be used for each LED.

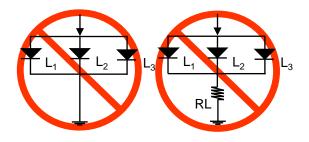
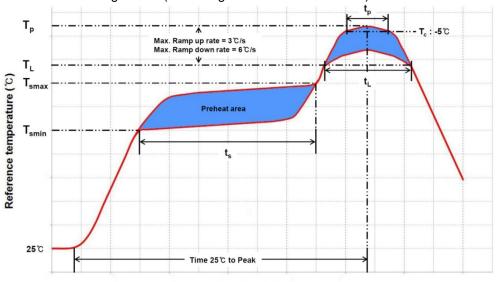


Fig.2 Abnormal Circuit


Circuits to Avoid: The current through the LEDs may vary due to the variation in LED forward voltage.

- -. The driving circuits must be designed to operate the LEDs by forward bias only.
- -. Reverse voltages can damage the zener diode, which can cause the LED to fail.
- -. A constant current LED driver is recommended to power the LEDs.

10. Cautions on Use

10-8. Soldering Conditions

- -. Reflow soldering is the recommended method for assembling LEDs on a circuit board.
- -. LG Innotek does not guarantee the performance of the LEDs assembled by the dip soldering method.
- -. Recommended Soldering Profile (according to JEDEC J-STD-020D)

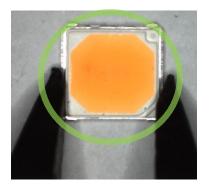
Time (sec)

Profile Feature	Pb-Free Assembly	Pb-Based Assembly
$\begin{array}{c} Preheat / Soak \\ Temperature Min (T_{smin}) \\ Temperature Max (T_{smax}) \\ Maximum time(t_s) from T_{smin} to T_{smax} \end{array}$	150°C 200°C 60~120 seconds	100℃ 150℃ 60~120 seconds
Ramp-up rate $(T_L \text{ to } T_p)$	3°C/ second max.	3°C/ second max.
Liquidous temperature (T _L)	217℃	183℃
Time (t_L) maintained above T_L	60~150 seconds	60~150 seconds
Maximum peak package body temperature (T _p)	260℃	235 ℃
Time(t _p) within $5^{\circ}\!$	30 seconds	20 seconds
Ramp-down rate (T _p to T _L)	6℃/second max.	6℃/second max.
Maximum Time 25 ℃ to peak temperature	8 minutes max.	6 minutes max.

- -. Reflow or hand soldering at the lowest possible temperature is desirable for the LEDs although the recommended soldering conditions are specified in the above diagrams.
- -. A rapid cooling process is not recommended for the LEDs from the peak temperature.
- -. The silicone encapsulant at the top of the LED package is a soft surface, which can easily be damaged by pressure. Precautions should be taken to avoid strong pressure on the silicone resin when leveraging the pick and place machines.
- -. Reflow soldering should not be done more than two times.

10. Cautions on Use

10-9. Soldering Iron


- -. The recommended condition is less than 5 seconds at 260 $^{\circ}$ C.
- -. The time must be shorter for higher temperatures. (+10 $^{\circ}$ C \rightarrow -1sec).
- -. The power dissipation of the soldering iron should be lower than 15W and the surface temperature of the device should be controlled at or under 230 °C.

10-10. Eye Safety Guidelines

- -. Do not directly look at the light when the LEDs are on.
- -. Proceed with caution to avoid the risk of damage to the eyes when examining the LEDs with optical instruments.

10-11. Manual Handling

-. Use Teflon-type tweezers to grab the base of the LED and do not apply mechanical pressure on the surface of the encapsulant.

11. Disclaimers

- -. LG Innotek is not responsible for any damages or accidents caused if the operating or storage conditions exceed the absolute maximum ratings recommended in this document.
- -. The LEDs described in this document are intended to be operated by ordinary electronic equipment.
- -. It is recommended to consult with LG Innotek when the environment or the LED operation is non-standard in order to avoid any possible malfunctions or damage to product or risk of life or health.
- -. Disassembly of the LED products for the purpose of reverse engineering is prohibited without prior written consent from LG Innotek. All defected LEDs must be reported to LG Innotek and are not to be disassembled or analyzed.
- -. The product information can be modified and upgraded without prior notice.

History of Revision

Revision	Date	Contents Revision	Remark
Rev. 1.0	13.09.05	New Establishment	
Rev. 2.0	13.11.13	Lm Min Spec. 변경 (Min.21→Min20)	