

SPECIFICATION

Customer	Product	Chip1206 LED
Customer No.	Туре	FC-3215 <u>XXX</u>

APPROVED SIGNATURES								

Research & Development Center						
APPROVE	CHECK	DRAW				
Release Date: 2009-12-21						

FC-3215 XXX

Chip Light Emitting Diode

Technical Data Sheet

This product is generally used as indicator and luminary for electronic equipment such as household appliance, communication equipment, and dashboard. And it also be widely used as flat backlight for Liquid Crystal Display (LCD).

Features:	
Color	Material
Red	Red-AlGaInP or AlGaAs
0,000,000	Orange - GaAsP
Orange	Orange -AlGaInP
Yellow	Yellow - GaAsP
Tenow	Yellow -AlGaInP
Yellow Green	Yellow Green -GaP
Tellow Green	Yellow Green -AlGaInP
Green	Green-InGaN
Blue	Blue- InGaN
White	Blue- InGaN

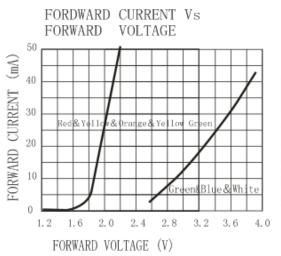
- ➤ Wide Viewing Angle
- > Reflow Solderable
- ➤ High and Low Luminous Intensity and Low Power Dissipation
- Good Reliability and Long Life
- Complied With RoHS Directive

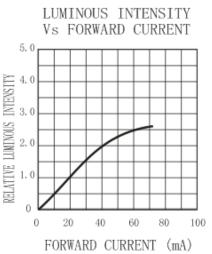
Electrical Characteristics

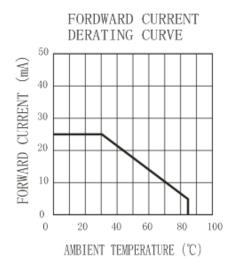
\diamond Absolute Maximum Ratings (Temperature=25°C):

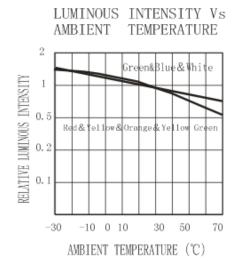
Parameter	Symbol	Rating		Unit	
Forward Current	I_{F}	25 Max.		mA	
Pulse Forward Current*	I_{FP}		100 Max.	mA	
Reverse Voltage	V_R		5 Max.	V	
Operating Temperature	T_{OPR}		-30 ~ +85	$^{\circ}$	
Storage Temperature	Tstg	_	40 ~ +100	$^{\circ}$	
		R			
		0	75 MAN		
		Y	75 MAX		
Power Dissipation	P_{D}	YG		mW	
		G			
		В	120 MAX		
		W			

• Note: Pulse width ≤ 0.1 ms, Duty $\leq 1/10$ *

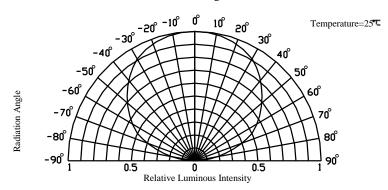

\Leftrightarrow Electro-Optical Characteristics (Temperature=25°C):


Part Number	EMITTED COLOR	Lens Color	Dominant Wavelength	IV(If=20mA) mcd		Vf (v) Typ	View Angle 201/2		
			(nm)	Min.	Тур.	•	201/2		
FC-3215HRK-660*			645	8	14				
FC-3215HRK-620D	Super Red		620	45	80				
FC-3215SXK-620H08	Super Red	Water	620	120	180	2.0	120		
FC-3215SXK-630D08		Clear	630	60	80	2.0	130		
FC-3215HOK-605C	Super		605	45	80				
FC-3215YOXK-600H08	Orange		604	120	180				
FC-3215YK	Yellow		589	7	10				
FC-3215YXK-585F08	Super Yellow	-	_	Water	588	45	80	2.0	130
FC-3215YXK-585H08				-	Water	589	100	150	2.0
FC-3215HYK-589N	renow		589	200	350				
FC-3215PGK	Green		560	7	10				
FC-3215GHK-570A08	Yellow	Water	570	18	30	2.0	130		
FC-3215GEK-572E	Green	Water	572	30	60				
FC-3215UGK-520D	g G		520	400	500	3.2	130		
FC-3215UGK-520H	Super Green	Clear	520	500	750	3.2	130		
FC-3215BXK-465D	G DI	Clear	465	80	100	3.2	130		
FC-3215BK-470M	Super Blue		470	100	150	3.2	130		
FC-3215WD-460K	Super White	Yellow diffused	7500-12000K	400	550	3.2	130		
		107	R:625	120	150	2.0	130		
FC-3215SQGIBIK	Tri-Color	Water Clear	G:520	400	500	3.2	130		
		Clear	B:470	80	100	3.2	130		





Typical Characteristics Curves

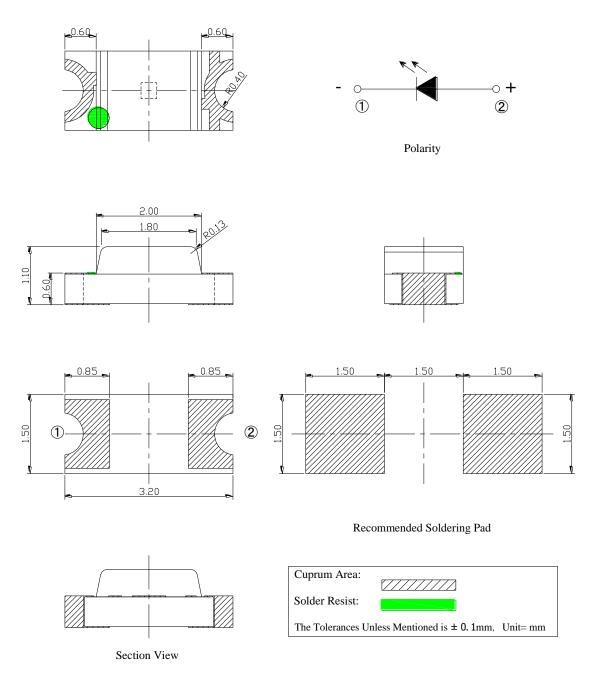


Radiation Diagram

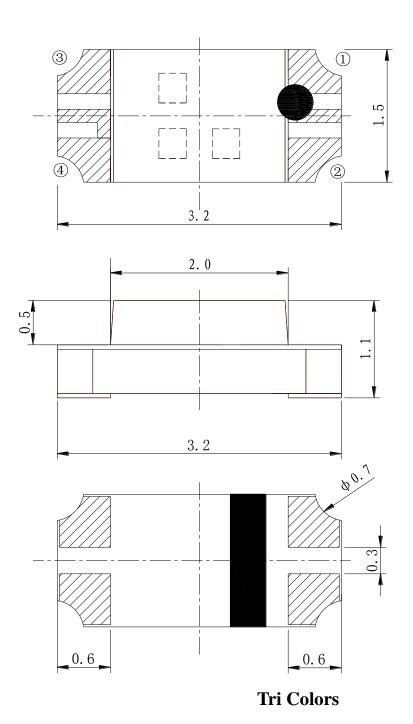
Reliability Test Items And Conditions

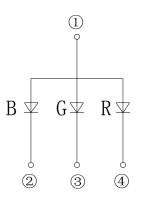
Test Items	Test Conditions	Quantity	Judging Criteria
Solderability	Solder Temperature: 300° C Solder Duration: (3.5 ± 0.5) sec.	15	Solderable Area Over 95%
Thermal Shock Followed by High Temperature And High Humidity Cyclic	-40°C → 10 min. 5 Cycles	11	C=0 & I**
Resistance For Soldering Heat	Reflow Soldering	15	C=0 & I**
DC Operating Life	fe 1000 hrs. Forward Current: 25mA		C=0 & I*
High Temperature Storage	100°C → 1000 hrs.	15	C=0 & I*
High Temperature And High Humidity Cyclic	25 °C~55 °C (90%~95%) RH 6 Cycles for 144 hrs., Recover for 2 hrs.	11	C=0 & I*

*1 Criteria For Judging Damage

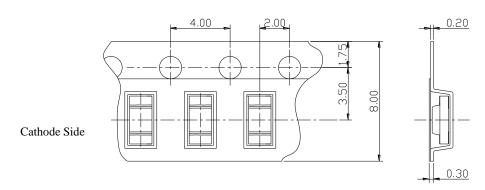

Items	Symbol	Test Conditions	Criteria For Judging Damage I*	Criteria For Judging Damage I**
Forward Voltage	V_{F}	I _F =20mA	≥USL×1.2	≥USL
Reverse Current	I_R	V _R =5V	≥USL×2.0	≥USL
Luminous Intensity	I_V	I _F =20mA	≤LSL×0.5	≤LSL

^{*} USL: Upper Standard Level, LSL: Lower Standard Level *

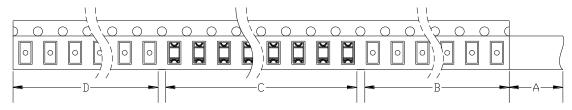



Outline Dimensions

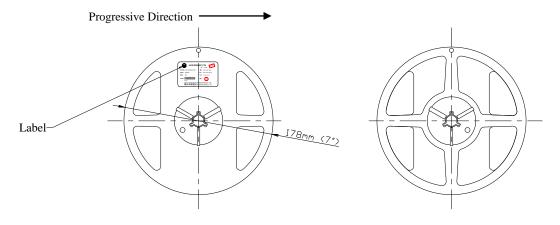
Single Color



Packaging (1)


♦ Carrier Tape

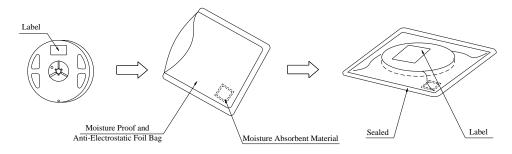
All dimensions in mm, tolerances unless mentioned is ± 0.1 mm.

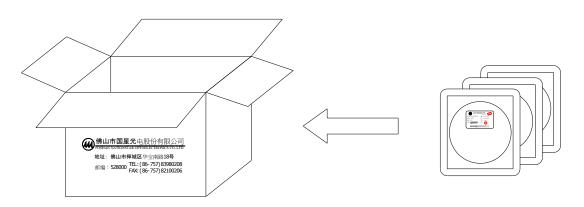

♦ Details Of Carrier Tape

前进方向 Progressive Direction ————

A: Top Cover Tape, 300mm; B: Leader, Empty, 200mm; C:3000 Lamps Loaded; D: Trailer, Empty, 200mm.

♦ Reel Dimension





Packaging (2)

Moisture Proof and Anti-Electrostatic Foil Bag

Cardboard Box

Label Explanation

QTY: Quantity

BIN: Rank

LOT: Lot Number

λd: Wavelength Range

IV: Luminous Intensity Range

VF: Forward Voltage Range

IF: Testing Current

LED PRODUCTS

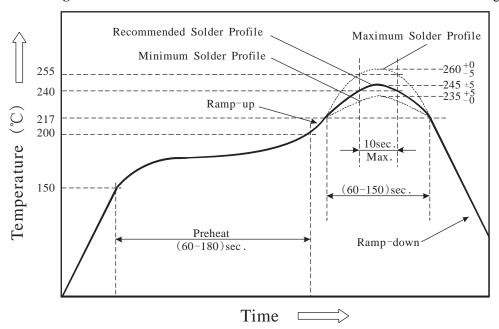
¦ **Ä:** (xxx-xxx) nm TYPE: XX-XXXXX-XX QTY: XXXX IV: (xxx-xxx) mcd BIN: XX **VF:** (xx-xx) V

LOT:

QC:

IF = x mA

FOSHAN NATIONSTAR OPTOELECTRONICS CO., LTD 佛山市国星光电股份有限公司


Guideline for Soldering

1. Hand Soldering

A soldering iron of less than 20W is recommended to be used in Hand Soldering. Please keep the temperature of the soldering iron under 300°C while soldering. Each terminal of the LED is to go for less than 3 second and for one time only.

Be careful because the damage of the product is often started at the time of the hand soldering.

2. **Reflow Soldering:** Use the conditions shown in the under Profile of Pb-Free Reflow Soldering.

- Reflow soldering should not be done more than two times.
- Stress on the LEDs should be avoided during heating in soldering process.
- After soldering, do not deal with the product before its temperature drop down to room temperature.

3. Cleaning

It is recommended that alcohol be used as a solvent for cleaning after soldering. Cleaning is to go under 30°C for 3 minutes or 50°C for 30 seconds. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not.

Ultrasonic cleaning is also an effective way for cleaning. But the influence of Ultrasonic cleaning on LED depends on factors such as ultrasonic power. Generally, the ultrasonic power should not be higher than 300W. Before cleaning, a pre-test should be done to confirm whether any damage to LEDs will occur.

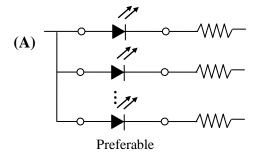
Note: This general guideline may not apply to all PCB designs and configurations of all soldering equipment. The technique in practice is influenced by many factors, it should be specialized base on the PCB designs and configurations of the soldering equipment.

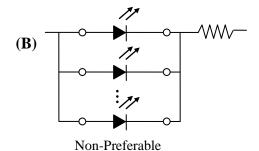
Precautions (1)

1. Storage

- Moisture proof and anti-electrostatic package with moisture absorbent material is used, to keep moisture to a minimum.
- Before opening the package, the product should be kept at 30° C or less and humidity less than 60% RH, and be used within a year.
- After opening the package, the product should be stored at 30°C or less and humidity less than 10%RH, and be soldered within 168 hours (7 days). It is recommended that the product be operated at the workshop condition of 30°C or less and humidity less than 60%RH.
- If the moisture absorbent material has fade away or the LEDs have exceeded the storage time, baking treatment should be performed based on the following condition: $(60\pm5)^{\circ}$ C for 24 hours.

2. Static Electricity


Static electricity or surge voltage damages the LEDs. Damaged LEDs will show some unusual characteristics such as the forward voltage becomes lower, or the LEDs do not light at the low current., even not light.

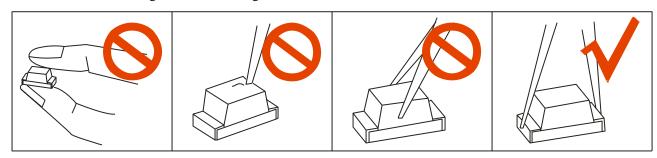

All devices, equipment and machinery must be properly grounded. At the same time, it is recommended that wrist bands or anti-electrostatic gloves, anti-electrostatic containers be used when dealing with the LEDs.

3. Design Consideration

In designing a circuit, the current through each LED must not exceed the absolute maximum rating specified for each LED. In the meanwhile, resistors for protection should be applied, otherwise slight voltage shift will cause big current change, burn out may happen.

It is recommended to use Circuit A which regulates the current flowing through each LED rather than Circuit B. When driving LEDs with a constant voltage in Circuit B, the current through the LEDs may vary due to the variation in Forward Voltage (VF) of the LEDs. In the worst case, some LED may be subjected to stresses in excess of the Absolute Maximum Rating.

Thermal Design is paramount importance because heat generation may result in the Characteristics decline, such as brightness decreased, Color changed and so on. Please consider the heat generation of the LEDs when making the system design.



Precautions (2)

4. Others

When handling the product, touching the encapsulant with bare hands will not only contaminate its surface, but also affect on its optical characteristics. Excessive force to the encapsulant might result in catastrophic failure of the LEDs due to die breakage or wire deformation. For this reason, please do not put excessive stress on LEDs, especially when the LEDs are heated such as during Reflow Soldering.

The epoxy resin of encapsulant is fragile, so please avoid scratch or friction over the epoxy resin surface. While handling the product with tweezers, do not hold by the epoxy resin, be careful.

5. Safety Advice For Human Eyes

Viewing direct to the light emitting center of the LEDs, especially those of great Luminous Intensity, will cause great hazard to human eyes. Please be careful.

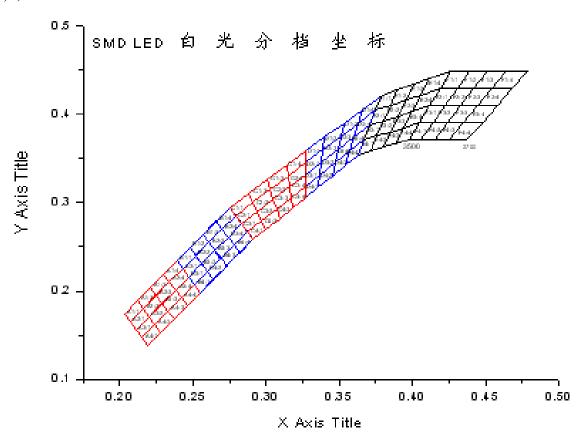
Appendix

IV(mcd) BINS:

Detailed Bracket								
IV(mcd) IV(mcd) IV(mcd) IV(mcd)								
7-9	24-30	80-100	270-330					
9-11	30-36	100-120	330-400					
11-13	36-45	120-150	400-500					
13-16	45-55	150-180	500-600					
16-20	55-65	180-220	600-750					
20-24	65-80	220-270	750-900					

$V_F(V)$ BINS:

	Detailed Bracket							
VF(V)	VF(V)	VF(V)	VF(V)					
1.6-1.7	2.2-2.3	2.8-2.9	3.4-3.5					
1.7-1.8	2.3-2.4	2.9-3.0	3.5-3.6					
1.8-1.9	2.4-2.5	3.0-3.1	3.6-3.7					
1.9-2.0	2.5-2.6	3.1-3.2	3.7-3.8					
2.0-2.1	2.6-2.7	3.2-3.3	3.8-3.9					
2.1-2.2	2.7-2.8	3.3-3.4	3.9-4.0					


λ $_{D}$ (nm) BINS

	λ _D (nm)		$\lambda_{D}(\mathbf{nm})$	
Blue	463-466	Green	515-517.5	527.5-530
	466-469		517.5-520	530-532.5
	469-472		520-522.5	532.5-535
	472-475		522.5-525	
Yellow	568-570		525-527.5	
Green	570-572	Yellow	580-582.5	590-592.5
	572-574		582.5-585	592.5-595
	574-576		585-587.5	
Orange	598~601		587.5-590	
	601~604	Red	620~640	
	604~607			
	607~610			

White (X,Y) BINS:

		Bottom	Left	Тор	Right			Bottom	Left	Тор	Right
A ⊠	X	0.219	0.203	0.239	0.255	B ⊠	X	0.255	0.239	0.275	0.291
X:0.229 Y:0.186	Y	0.138	0.174	0.234	0.198	X:0.265 Y:0.246	Y	0.198	0.234	0.294	0.258
C ⊠ X:0.305	X	0.291	0.275	0.327	0.327	D ⊠ X:0.349	X	0.327	0.327	0.379	0.363
Y:0.304	Y	0.258	0.294	0.358	0.306	Y:0.36	Y	0.306	0.358	0.422	0.354
E 🗵	X	0.363	0.379	0.426	0.398	F 🗵	X	0.398	0.426	0.479	0.437
X:0.39 Y:0.398	Y	0.354	0.422	0.448	0.372	X:0.433 Y:0.41	Y	0.372	0.448	0.448	0.372

When the Label is printed Please give clear indication of color coordinate area (as: A1-2)

Notes: Measurement Condition: $I_F=20mA$