74HC2G04; 74HCT2G04 Dual inverter Rev. 2 — 11 June 2018

Product data sheet

1 **General description**

The 74HC2G04; 74HCT2G04 is a dual inverter. Inputs include clamp diodes that enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

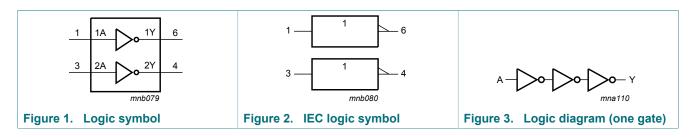
Features and benefits 2

- Wide supply voltage range from 2.0 V to 6.0 V
- Input levels:
 - For 74HC2G04: CMOS level
 - For 74HCT2G04: TTL level
- Complies with JEDEC standard no. 7A
- High noise immunity
- ESD protection:
 - HBM JESD22-A114-D exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- · Low power dissipation
- Balanced propagation delays
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Ordering information

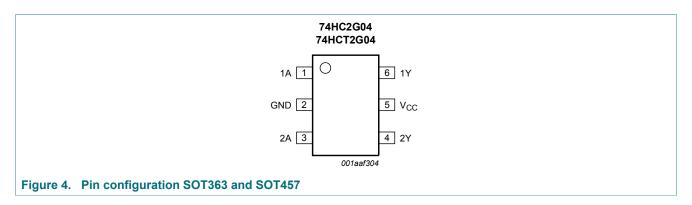
Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74HC2G04GW	-40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363				
74HCT2G04GW								
74HC2G04GV	-40 °C to +125 °C	SC-74	plastic surface-mounted package (TSOP6);	SOT457				
74HCT2G04GV			6 leads					



4 Marking

Table 2. Marking


Type number	Marking code
74HC2G04GW	H4
74HCT2G04GW	T4
74HC2G04GV	H04
74HCT2G04GV	T04

5 Functional diagram

6 Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
1A	1	data input
GND	2	ground (0 V)
2A	3	data input
2Y	4	data output
V _{CC}	5	supply voltage
1Y	6	data output

74HC_HCT2G04

All information provided in this document is subject to legal disclaimers.

Functional description

Table 4. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$

Input	Output
nA	nY
L	Н
Н	L

Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{OK}	output clamping current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$ [1]	-	±25	mA
I _{CC}	supply current	[1]	-	+50	mA
I _{GND}	ground current	[1]	-	-50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[2]	-	250	mW

The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed. For SC-88 and SC-74 packages: above 87.5 $^{\circ}$ C the value of P_{tot} derates linearly with 4.0 mW/K.

Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	7	4HC2G0	4	74	4HCT2G	04	Unit
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
fall rate	fall rate	V _{CC} = 4.5 V	-	-	139	-	-	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

74HC_HCT2G04

All information provided in this document is subject to legal disclaimers.

10 Static characteristics

Table 7. Static characteristics for 74HC2G04

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	25 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	- - - 0.5	V
V _{IL} V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5		V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0		V
		$I_{\rm O}$ = -4.0 mA; $V_{\rm CC}$ = 4.5 V	4.18	4.32		V
		I _O = -5.2 mA; V _{CC} = 6.0 V	5.68	5.81	-	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	I_{O} = 20 μ A; V_{CC} = 2.0 V	-	0	0.5 1.35 1.8 0.1 0.1 0.26 0.26 ±0.1 1.0	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	V
		I_{O} = 20 μ A; V_{CC} = 6.0 V	-	0	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	0.16	0.26	V
I _I	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$	-	-	±0.1	μΑ
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 6.0 V	-	-	1.0	μΑ
Cı	input capacitance		-	1.5	-	pF

74HC2G04; 74HCT2G04

Dual inverter

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C					
V _{IL}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-		V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.5	V		
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	-	-	V
		I_{O} = -20 μ A; V_{CC} = 4.5 V	4.4	-	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	-	1.8 - - - - - 0.1	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	4.13	-	-	V
		I_{O} = -5.2 mA; V_{CC} = 6.0 V	5.63	-	-	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}			- 0.5 1.35 1.8 0.1 0.1 0.1 0.33 0.33	
	voltage	I_{O} = 20 μ A; V_{CC} = 2.0 V	-	-	0.1	V
		I_{O} = 20 μ A; V_{CC} = 4.5 V	-	-	0.1	V
		I_{O} = 20 μ A; V_{CC} = 6.0 V	-	-	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	-	0.33	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	-	0.33	V
l _l	input leakage current	V_I = GND or V_{CC} ; V_{CC} = 6.0 V	-	-	±1.0	μA
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 6.0 V	-	-	10.0	μΑ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +125 °C			1	1	
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	-	- - - 0.5 1.35	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	-		V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	-		V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	3.7	-		V
		I_{O} = -5.2 mA; V_{CC} = 6.0 V	5.2	-	-	V
V_{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}		4.2 - - 0.5 \text{\tilit{\texitet{\text{\text{\text{\text{\texi\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi{\text{\texi\te		
	voltage	I _O = 20 μA; V _{CC} = 2.0 V	-	-	0.1	V
		I_{O} = 20 μ A; V_{CC} = 4.5 V	-	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	-	0.4	V
		I_{O} = 5.2 mA; V_{CC} = 6.0 V	-	-	0.4	V
I _I	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 6.0 V	-	-	20.0	μΑ

Table 8. Static characteristics for 74HCT2G04

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V_{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}		,		
V	voltage	I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	4.18	4.5 -	V	
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	V
I _I	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$	-	-	±0.1	μA
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 5.5 V	-	-	1.0	μΑ

74HC HCT2G04

All information provided in this document is subject to legal disclaimers.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔI _{CC}	additional supply current	$V_I = V_{CC} - 2.1 \text{ V;} V_{CC} = 4.5 \text{ V to } 5.5 \text{ V;}$ $I_O = 0 \text{ A}$	-	-	300	μA
Cı	input capacitance		-	1.5	-	pF
T _{amb} = -4	40 °C to +85 °C		'		'	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	$ \begin{array}{c} I_{0} = 0 \ \overline{A} \\ \\ \text{De} \\ \\ \text{De} \\ \\ \text{De} \\ \\ \text{To oltage} \\ \\ \text{V}_{CC} = 4.5 \ V \ to 5.5 \ V \\ \\ \text{To oltage} \\ \\ \text{V}_{CC} = 4.5 \ V \ to 5.5 \ V \\ \\ \text{To oltage} \\ \\ \text{V}_{CC} = 4.5 \ V \ to 5.5 \ V \\ \\ \text{To oltage} \\ \\ \text{To oltage} \\ \\ \text{V}_{CC} = 4.5 \ V \ to 5.5 \ V \\ \\ \text{To oltage} \\ \\ \text{To oltage} \\ \\ \text{V}_{CC} = 4.5 \ V \ to 5.5 \ V \\ \\ \text{To oltage} \\ \\ $	V			
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	4.13	-	-	V
V_{OL}	input capacitance 40 °C to +85 °C HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage input leakage current supply current additional supply current 40 °C to +125 °C HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage LOW-level output voltage input leakage current supply current	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = 20 μA; V _{CC} = 4.5 V	-	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	-	0.33	V
I _I	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μΑ
I _{CC}	supply current		-	-	10.0	μΑ
Δl _{CC}	additional supply current		-	-	375	μA
T _{amb} = -4	40 °C to +125 °C		'		'	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}		$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = -20 μA; V _{CC} = 4.5 V	4.4	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	3.7	-	-	V
V_{OL}	· ·	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = 20 μA; V _{CC} = 4.5 V	-	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	-	0.4	V
lį	input leakage current	V_I = GND or V_{CC} ; V_{CC} = 5.5 V	-	-	±1.0	μΑ
I _{CC}	supply current		-	-	20.0	μA
ΔI _{CC}	additional supply current	$V_1 = V_{CC} - 2.1 \text{ V;} V_{CC} = 4.5 \text{ V to } 5.5 \text{ V;}$ $I_0 = 0 \text{ A}$	-	-	410	μΑ

11 Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6.

Symbol	Parameter	Conditions		25 °C		-4	0 °C to +1	25 °C	Unit
			Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
74HC2G	04								
t _{pd}	propagation	nA to nY; see Figure 5 [1]							
	delay	V _{CC} = 2.0 V; C _L = 50 pF	-	22	75	-	90	110	ns
		V_{CC} = 4.5 V; C_L = 50 pF	-	8	15	-	18	22	ns
		$V_{CC} = 6.0 \text{ V}; C_L = 50 \text{ pF}$	-	6	13	-	16	20	ns
t _t	transition time	nY; see Figure 5 [2]							
		V_{CC} = 2.0 V; C_L = 50 pF	-	18	75	-	95	125	ns
		V_{CC} = 4.5 V; C_L = 50 pF	-	6	15	-	19	25	ns
		$V_{CC} = 6.0 \text{ V}; C_L = 50 \text{ pF}$	-	5	13	-	16	20	ns
C _{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC}$ [3]	-	9	-	-	-	-	pF
74HCT2	G04			I	'		1	ı	
t _{pd}	propagation	nA to nY; see Figure 5 [1]							
	delay	V_{CC} = 4.5 V; C_L = 50 pF	-	10	18	-	23	29	ns
t _t	transition time	nY; see Figure 5 [2]							
		V_{CC} = 4.5 V; C_L = 50 pF	-	6	15	-	19	22	ns
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC} - 1.5 \text{ V}$ [3]	-	9	-	-	-	-	pF

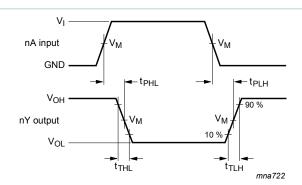
^[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

 ^[2] t is the same as t_{TLH} and t_{THL}.
 [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

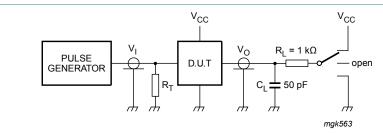

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $[\]Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

11.1 Waveform and test circuit


Measurement points are given in Table 10.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Figure 5. The data input (nA) to output (nY) propagation delays and output transition times

Table 10. Measurement points

Туре	Input			Output
	V _M	V _I	$t_r = t_f$	V _M
74HC2G04	0.5V _{CC}	GND to V _{CC}	6.0 ns	0.5V _{CC}
74HCT2G04	1.3 V	GND to 3.0 V	6.0 ns	1.3 V

Test data is given in Table 11.

Definitions test circuit:

 R_{l} = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

Figure 6. Test circuit for measuring switching times

Table 11. Test data

Туре	Input		Test
	VI	t _r , t _f	t _{PHL} , t _{PLH}
74HC2G04	GND to V _{CC}	6 ns	open
74HCT2G04	GND to 3.0 V	6 ns	open

74HC_HCT2G04

All information provided in this document is subject to legal disclaimers.

12 Package outline

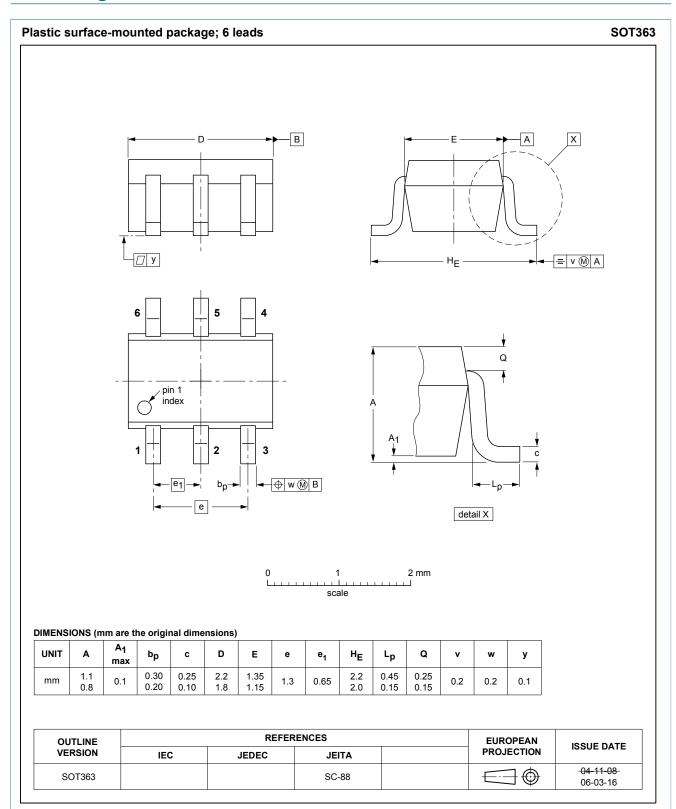
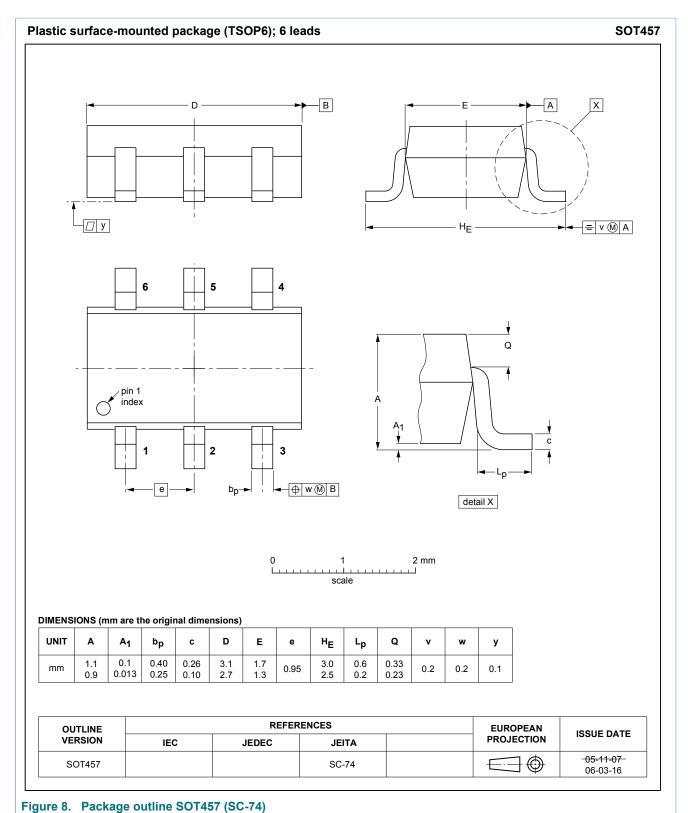



Figure 7. Package outline SOT363 (SC-88)

rigare of rackage datime do 1407 (00-14)

13 Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14 Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT2G04 v.2	20180611	Product data sheet	-	74HC_HCT2G04 v.1
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 			
74HC_HCT2G04 v.1	20061115	Product data sheet	-	-

15 Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions". [2] [3]
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

All information provided in this document is subject to legal disclaimers.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1	General description	1
2	Features and benefits	1
3	Ordering information	
4	Marking	
5	Functional diagram	
6	Pinning information	2
6.1	Pinning	
6.2	Pin description	
7	Functional description	
8	Limiting values	
9	Recommended operating conditions	
10	Static characteristics	
11	Dynamic characteristics	
11.1	Waveform and test circuit	
12	Package outline	
13	Abbreviations	
14	Revision history	
15	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.