ST 2SA933

PNP Silicon Epitaxial Planar Transistor

for switching and AF amplifier applications.

The transistor is subdivided into three groups, O, Y and S, according to its DC current gain. As complementary type the NPN transistor ST 2SC945 is recommended.

On special request, these transistors can be manufactured in different pin configurations.

1. Emitter 2. Collector 3. Base TO-92 Plastic Package

Absolute Maximum Ratings ($T_a = 25$ °C)

Parameter	Symbol	Value	Unit	
Collector Base Voltage	-V _{CBO}	50	V	
Collector Emitter Voltage	-V _{CEO}	40	V	
Emitter Base Voltage	-V _{EBO}	5	V	
Collector Current	-I _C	100	mA	
Power Dissipation	P _{tot}	300	mW	
Junction Temperature	T _j	150	°C	
Storage Temperature Range	T _{stg}	- 55 to + 150	°C	

Characteristics at T_a = 25 °C

Characteristics at T _a = 25 °C						
Parameter		Symbol	Min.	Тур.	Max.	Unit
DC Current Gain						
at $-V_{CE} = 6 \text{ V}$, $-I_C = 1 \text{ mA}$ Current Ga	ain O	h _{FE}	120	-	270	-
Group	Y	h _{FE}	180	-	390	-
	S	h _{FE}	270	-	560	-
Collector Base Cutoff Current		1			0.5	
at $-V_{CB} = 30 \text{ V}$		-I _{CBO}	-	-	0.5	μA
Emitter Base Cutoff Current		-I _{EBO}	_	_	0.5	μA
at -V _{EB} = 4 V		_iEBO	_	_	0.5	μΛ
Collector Base Breakdown Voltage		-V _{(BR)CBO}	50	_	_	V
at $-I_C = 50 \mu A$		V (BR)CBO				•
Collector Emitter Breakdown Voltage		-V _{(BR)CEO}	40	_	_	V
at $-I_C = 1 \text{ mA}$		V (BR)CEO				•
Emitter Base Breakdown Voltage		-V _{(BR)EBO}	5	_	_	V
at -I _E = 50 μA		- (BK)EBO				•
Collector Emitter Saturation Voltage		-V _{CE(sat)}	_	-	0.5	V
at $-I_C = 50 \text{ mA}, -I_B = 5 \text{ mA}$		• CE(Sat)			0.0	
Gain Bandwidth Product		f⊤	-	140	_	MHz
at - V_{CE} = 12 V, - I_{C} = 2 mA		• 1		. 10		
Output Capacitance		C _{OB}	_	-	5	pF
at $-V_{CB} = 12 \text{ V}, f = 1 \text{ MHz}$		- 06				le ;

