DISCRETE SEMICONDUCTORS

Product data sheet Supersedes data of 2000 Apr 11 2004 Jan 16

MMBT2222A

NPN switching transistor

FEATURES

- High current (max. 600 mA)
- Low voltage (max. 40 V).

APPLICATIONS

• Switching and linear amplification.

DESCRIPTION

NPN switching transistor in a SOT23 plastic package. PNP complement: PMBT2907A.

MARKING

TYPE NUMBER	MARKING CODE ⁽¹⁾
MMBT2222A	7C*

Note

- 1. * = p: Made in Hong Kong.
 - * = t : Made in Malaysia.

* = W : Made in China.

ORDERING INFORMATION

TYPE		PACKAGE		
NUMBER	NAME	DESCRIPTION	VERSION	
MMBT2222A	—	plastic surface mounted package; 3 leads	SOT23	

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	75	V
V _{CEO}	collector-emitter voltage	open base	_	40	V
V _{EBO}	emitter-base voltage	open collector	_	6	V
I _C	collector current (DC)		-	600	mA
I _{CM}	peak collector current		_	800	mA
I _{BM}	peak base current		_	200	mA
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$; note 1	-	250	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

Note

1. Transistor mounted on an FR4 printed-circuit board.

Fig.1 Simplified outline (SOT23) and symbol.

PINNING

PIN	DESCRIPTION		
1	base		
2	emitter		
3	collector		

NPN switching transistor

MMBT2222A

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	note 1	500	K/W

Note

1. Transistor mounted on an FR4 printed-circuit board.

CHARACTERISTICS

 $T_i = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 60 V	_	10	nA
		$I_E = 0; V_{CB} = 60 V; T_j = 125 °C$	-	10	μA
I _{EBO}	emitter cut-off current	I _C = 0; V _{EB} = 5 V	_	10	nA
h _{FE}	DC current gain	I _C = 0.1 mA; V _{CE} = 10 V	35	-	
		I _C = 1 mA; V _{CE} = 10 V	50	-	
		I _C = 10 mA; V _{CE} = 10 V	75	-	
		I_{C} = 10 mA; V_{CE} = 10 V; T_{amb} = -55 °C	35	-	
		I _C = 150 mA; V _{CE} = 10 V	100	300	
		I _C = 150 mA; V _{CE} = 1 V	50	-	
		I _C = 500 mA; V _{CE} = 10 V	40	-	
V _{CEsat}	collector-emitter saturation voltage	$I_{C} = 150 \text{ mA}; I_{B} = 15 \text{ mA}; \text{ note } 1$	-	300	mV
		$I_{\rm C} = 500 \text{ mA}; I_{\rm B} = 50 \text{ mA}; \text{ note 1}$	-	1	V
V _{BEsat}	base-emitter saturation voltage	$I_{C} = 150 \text{ mA}; I_{B} = 15 \text{ mA}; \text{ note } 1$	0.6	1.2	V
		$I_{C} = 500 \text{ mA}; I_{B} = 50 \text{ mA}; \text{ note 1}$	_	2	V
C _c	collector capacitance	I _E = i _e = 0; V _{CB} = 10 V; f = 1 MHz	-	8	pF
C _e	emitter capacitance	$I_{C} = i_{c} = 0; V_{EB} = 500 \text{ mV};$ f = 1 MHz	-	25	pF
f _T	transition frequency	I _C = 20 mA; V _{CE} = 20 V; f = 100 MHz	300	-	MHz
F	noise figure	$I_C = 100 \ \mu$ A; V _{CE} = 5 V; R _S = 1 kΩ; f = 1 kHz	-	4	dB
Switching ti	mes (between 10% and 90% levels); (see F	ig.2)			
t _{on}	turn-on time	I _{Con} = 150 mA; I _{Bon} = 15 mA;	_	35	ns
t _d	delay time	I _{Boff} = −15 mA	_	15	ns
t _r	rise time		_	20	ns
t _{off}	turn-off time		_	250	ns
t _s	storage time		_	200	ns
t _f	fall time		_	60	ns

Note

1. Pulse test: $t_p \leq 300~\mu s;~\delta \leq 0.02.$

NPN switching transistor

MMBT2222A

NPN switching transistor

PACKAGE OUTLINE

MMBT2222A

General Purpose Transistors NPN Silicon

Features

- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage MMBT2222L MMBT2222AL, SMMBT2222AL	V _{CEO}	30 40	Vdc
Collector-Base Voltage MMBT2222L MMBT2222AL, SMMBT2222AL	V _{CBO}	60 75	Vdc
Emitter – Base Voltage MMBT2222L MMBT2222AL, SMMBT2222AL	V _{EBO}	5.0 6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc
Collector Current – Peak (Note 3)	I _{CM}	1100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) $T_A = 25^{\circ}C$ Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.

3. Reference SOA curve.

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = 10 mAdo	c, I _B = 0) MMBT2222 MMBT2222A	V _{(BR)CEO}	30 40		Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \ \mu Adc$, I_P	E = 0) MMBT2222 MMBT2222A	V _{(BR)CBO}	60 75		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc$, $I_C =$	= 0) MMBT2222 MMBT2222A	V _{(BR)EBO}	5.0 6.0	- -	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	MMBT2222A, SMMBT2222A	I _{CEX}	_	10	nAdc
	MMBT2222 MMBT2222A, SMMBT2222A MMBT2222 MMBT2222A, SMMBT2222A	I _{CBO}	- - - -	0.01 0.01 10 10	μAdc
Emitter Cutoff Current ($V_{EB} = 3.0 \text{ Vdc}, I_C = 0$)	MMBT2222A, SMMBT2222A	I _{EBO}	-	100	nAdc
Base Cutoff Current (V_{CE} = 60 Vdc, $V_{EB(off)}$ = 3.0 Vd	Ic) MMBT2222A, SMMBT2222A	I _{BL}	-	20	nAdc
ON CHARACTERISTICS					
$ \begin{array}{l} \text{DC Current Gain} \\ (I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}\text{C}) \\ (I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) (\text{Note 4}) \\ (I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) (\text{Note 4}) \\ (I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) (\text{Note 4}) \\ \end{array} $	MMBT2222A only MMBT2222 MMBT2222A, SMMBT2222A	hfe	35 50 75 35 100 50 30 40	- - 300 - -	_
Collector – Emitter Saturation Voltage (Note 4) ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$)	MMBT2222 MMBT2222A, SMMBT2222A	V _{CE(sat)}		0.4 0.3	Vdc
$(I_{C} = 500 \text{ mAdc}, I_{B} = 50 \text{ mAdc})$	MMBT2222 MMBT2222A, SMMBT2222A			1.6 1.0	
Base – Emitter Saturation Voltage (Note 4) (I _C = 150 mAdc, I _B = 15 mAdc)	MMBT2222 MMBT2222A, SMMBT2222A	V _{BE(sat)}	_ 0.6	1.3 1.2	Vdc
$(I_{\rm C} = 500 \text{ mAdc}, I_{\rm B} = 50 \text{ mAdc})$	MMBT2222 MMBT2222A, SMMBT2222A			2.6 2.0	
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain – Bandwidth Product (Note 5) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	MMBT2222 MMBT2222A, SMMBT2222A	f _T	250 300		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	8.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	MMBT2222 MMBT2222A, SMMBT2222A	C _{ibo}		30 25	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	MMBT2222A, SMMBT2222A MMBT2222A, SMMBT2222A	h _{ie}	2.0 0.25	8.0 1.25	kΩ
$\label{eq:loss} \begin{array}{l} \mbox{Voltage Feedback Ratio} \\ (I_C = 1.0 \mbox{ mAdc}, V_{CE} = 10 \mbox{ Vdc}, f = 1.0 \mbox{ kHz}) \\ (I_C = 10 \mbox{ mAdc}, V_{CE} = 10 \mbox{ Vdc}, f = 1.0 \mbox{ kHz}) \end{array}$	MMBT2222A, SMMBT2222A MMBT2222A, SMMBT2222A	h _{re}		8.0 4.0	X 10 ⁻⁴
$ Small – Signal Current Gain \\ (I_C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) \\ (I_C = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) $	MMBT2222A, SMMBT2222A MMBT2222A, SMMBT2222A	h _{fe}	50 75	300 375	-

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS				
	h _{oe}	5.0 25	35 200	μmhos
Collector Base Time Constant (I _E = 20 mAdc, V _{CB} = 20 Vdc, f = 31.8 MHz) MMBT2222A, SMMBT2222A	rb, C _c	-	150	ps
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz) MMBT2222A, SMMBT2222A	NF	_	4.0	dB
SWITCHING CHARACTERISTICS (MMBT2222A only)				

Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -0.5 \text{ Vdc},$	t _d	-	10	
Rise Time	$I_{\rm C} = 150 {\rm mAdc}, I_{\rm B1} = 15 {\rm mAdc})$	t _r	-	25	ns
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _s	-	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$)	t _f	_	60	113

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

5. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 2. Turn-Off Time

Figure 15. Safe Operating Area

ORDERING INFORMATION

Device	Specific Marking Code	Package	Shipping [†]
MMBT2222LT1G	M1B	SOT-23 (Pb-Free)	3000 / Tape & Reel
MMBT2222ALT1G, SMMBT2222ALT1G	1P	SOT-23 (Pb-Free)	3000 / Tape & Reel
MMBT2222LT3G	M1B	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBT2222ALT3G, SMMBT2222ALT3G	1P	SOT-23 (Pb-Free)	10,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP

Capable.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AR

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdt/Patent_Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor asy products herein. ON semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor asy products herein. On semiconductor and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor ada sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, dire

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Techni Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MMBT2222A

40V NPN SMALL SIGNAL TRANSISTOR IN SOT23

Features

- **Epitaxial Planar Die Construction**
- Complementary PNP Type: MMBT2907A
- Ideal for Low Power Amplification and Switching
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- **PPAP Capable (Note 4)**

Mechanical Data

- Case: SOT23
- Case Material: Molded Plastic, "Green" Molding Compound; UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Matte Tin Finish; Solderable per MIL-STD-202, Method 208 @3)
- Weight: 0.008 grams (Approximate)

Ordering Information (Notes 4 & 5)

Product	Status	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
MMBT2222A-7-F	Active	AEC-Q101	K1P	7	8	3,000
MMBT2222A-13-F	Active	AEC-Q101	K1P	13	8	10,000
MMBT2222AQ-7-F	Active	Automotive	K1P	7	8	3,000

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen and Antimony free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. Automotive products are AEC-Q101 qualified and are PPAP capable. Automotive, AEC-Q101 and standard products are electrically and thermally the same, except where specified. For more information, please refer to http://www.diodes.com/product_compliance_definitions.html.

5. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

Notes:

K1P = Product Type Marking Code YM = Date Code Marking Y or \overline{Y} = Year (ex: D = 2016) M or \overline{M} = Month (ex: 9 = September)

Date Code Key												
Year	201	5	2016	2017	2018	2019	2020	202	21 20	022	2023	2024
Code	С		D	E	F	G	Н			J	К	L
Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	75	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current	lc	600	mA
Peak Collector Current	ICM	800	mA
Peak Base Current	I _{BM}	200	mA

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit		
Collector Rower Dissinction	(Note 6)	D	310	mW	
	(Note 7)	PD	350		
Thermal Desistance, Junction to Ambient	(Note 6)	D	403	°C/W	
Thermal Resistance, Junction to Ambient	(Note 7)	Reja	357		
Thermal Resistance, Junction to Leads (Note 8)		R _{θJL}	350	°C/W	
Operating and Storage Temperature Range	T _J ,T _{STG}	-55 to +150	°C		

ESD Ratings (Note 9)

Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	4,000	V	ЗA
Electrostatic Discharge - Machine Model	ESD MM	400	V	С

6. For a device mounted on minimum recommended pad layout 1oz copper that is on a single-sided FR-4 PCB; device is measured under still air Notes: conditions whilst operating in a steady-state.

7. Same as Note 6, except the device is mounted on 15 mm x 15mm 1oz copper.

Thermal resistance from junction to solder-point (at the end of the leads).
Refer to JEDEC specification JESD22-A114 and JESD22-A115.

Thermal Characteristics and Derating Information

Pulse Power Dissipation

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage	BV _{CBO}	75	_	V	$I_{C} = 100 \mu A, I_{E} = 0$
Collector-Emitter Breakdown Voltage (Note 10)	BV _{CEO}	40	—	V	$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0$
Emitter-Base Breakdown Voltage	BV _{EBO}	6.0	[_	V	$I_{E} = 100 \mu A, I_{C} = 0$
Collector Cut-Off Current	I _{CBO}	—	10	nA μA	$V_{CB} = 60V, I_E = 0$ $V_{CB} = 60V, I_E = 0, T_A = +150^{\circ}C$
Collector Cut-Off Current	ICEX	_	10	nA	$V_{CE} = 60V, V_{EB(OFF)} = 3.0V$
Collector Cut-Off Current	ICEV	_	10	nA	$V_{CE} = 60V, V_{BE} = \pm 0.25V$
Emitter Cut-Off Current	I _{EBO}	_	10	nA	$V_{EB} = 5.0V, I_{C} = 0$
Base Cut-Off Current	IBL	_	20	nA	V _{CE} = 60V, V _{EB(OFF)} = 3.0V
ON CHARACTERISTICS (Note 10)	.1				
DC Current Gain	h _{FE}	35 50 75 100 40 50 35	 300 	_	$\begin{split} I_{C} &= 100 \mu A, \ V_{CE} &= 10 V \\ I_{C} &= 1.0 m A, \ V_{CE} &= 10 V \\ I_{C} &= 10 m A, \ V_{CE} &= 10 V \\ I_{C} &= 150 m A, \ V_{CE} &= 10 V \\ I_{C} &= 500 m A, \ V_{CE} &= 10 V \\ I_{C} &= 10 m A, \ V_{CE} &= 10 V, \ T_{A} &= -55^{\circ}C \\ I_{C} &= 150 m A, \ V_{CE} &= 1.0 V \end{split}$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	0.3 1.0	V	$I_{C} = 150$ mA, $I_{B} = 15$ mA $I_{C} = 500$ mA, $I_{B} = 50$ mA
Base-Emitter Saturation Voltage	V _{BE(SAT)}	0.6	1.2 2.0	V	$I_{C} = 150$ mA, $I_{B} = 15$ mA $I_{C} = 500$ mA, $I_{B} = 50$ mA
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance	Cobo	_	8	pF	$V_{CB} = 10V, f = 1.0MHz, I_E = 0$
Input Capacitance	Cibo	_	25	pF	$V_{EB} = 0.5V, f = 1.0MHz, I_{C} = 0$
Current Gain-Bandwidth Product	fT	300		MHz	$V_{CE} = 20V, I_C = 20mA,$ f = 100MHz
Noise Figure	N _F	_	4.0	dB	$\label{eq:VCE} \begin{split} V_{CE} &= 10V, \ I_C = 100 \mu A, \\ R_S &= 1.0 k \Omega, \ f = 1.0 k Hz \end{split}$
SWITCHING CHARACTERISTICS					
Delay Time	tD		10	ns	$\label{eq:VCC} \begin{array}{l} V_{CC}=30V,\ I_C=150mA,\\ V_{BE(OFF)}=-0.5V,\ I_{B1}=15mA \end{array}$
Rise Time	t _R	_	25	ns	$\label{eq:VCC} \begin{array}{l} V_{CC}=3.0V,\ I_{C}=150mA,\ I_{B1}=15mA,\\ V_{BE(OFF)}=0.5V \end{array}$
Storage Time	ts		225	ns	$V_{CC} = 30V, I_C = 150mA,$ $I_{B1} = I_{B2} = 15mA$
Fall Time	t⊨		60	ns	$V_{CC} = 30V$, $I_{C} = 150mA$, $I_{B1} = I_{B2} = 15mA$

Note: 10. Measured under pulsed conditions. Pulse width \leq 300µs. Duty cycle \leq 2%.

 $T_A = -50^{\circ}C$

C_{obo}

18 20

1,000

MMBT2222A Document number: DS30041 Rev. 16 - 2

5 of 7 www.diodes.com

April 2016 © Diodes Incorporated

100

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23

SOT23								
Dim	Min	Max	Тур					
Α	0.37	0.51	0.40					
В	1.20	1.40	1.30					
С	2.30	2.50	2.40					
D	0.89	1.03	0.915					
F	0.45	0.60	0.535					
G	1.78	2.05	1.83					
Н	2.80	3.00	2.90					
J	0.013	0.10	0.05					
K	0.890	1.00	0.975					
K1	0.903	1.10	1.025					
L	0.45	0.61	0.55					
L1	0.25	0.55	0.40					
М	0.085	0.150	0.110					
а	0°	8°						
All	Dimens	ions in	mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
С	2.0
Х	0.8
X1	1.35
Y	0.9
Y1	2.9

SOT23

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com