

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

BC182LB

- NPN General Purpose Amplifier

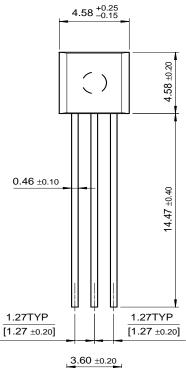
 This device is designed for general purpose amplifier application at collector currents to 100mA.
- Sourced from process 10.

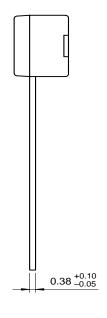
1. Emitter 2. Collector 3. Base

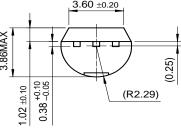
Absolute Maximum Ratings $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	50	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current - Continuous	100	mA
T_{J} , T_{STG}	Storage Junction Temperature Range	- 55 ~ 150	°C

Electrical Characteristics $T_C=25$ °C unless otherwise noted


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Chara	cteristics					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 2mA, I_B = 0$	50			V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10\mu A, I_E = 0$	60			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	6			V
I _{CBO}	Collector Cut-off Current	$V_{CB} = 50V, V_{BE} = 0$			15	nA
I _{EBO}	Emitter-Base Leakage Current	$V_{EB} = 4V, I_{E} = 0$			15	nA
On Chara	cteristics			•		
h _{FE}	DC Current Gain	$V_{CE} = 5V, I_{C} = 10\mu A$	40			
		$V_{CE} = 5V$, $I_C = 100mA$	80			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = 10mA, I_B = 0.5mA$			0.25	V
		$I_C = 100 \text{mA}, I_B = 5 \text{mA}$			0.6	
V _{BE} (sat)	Base-Emitter Saturation Voltage	$I_C = 100 \text{mA}, I_B = 5 \text{mA}$			1.2	V
V _{BE} (on)	Base-Emitter On Voltage	$V_{CE} = 5V$, $I_C = 2mA$	0.55		0.7	V
Dynamic (Characteristics					
f _T	Current Gain Bandwidth Product	$V_{CE} = 5V, I_{C} = 10mA, f = 100MHz$	150			MHz
C _{ob}	Output Capacitance	$V_{CE} = 10V, I_{C} = 0, f = 1MHz$			5	pF
h _{fe}	Small Signal Current Gain	$V_{CE} = 5V$, $I_C = 2mA$, $f = 1KHz$	240		500	
NF	Noise Figure	$V_{CE} = 5V, I_{C} = 0.2mA$			10	dB
		$R_S = 2K\Omega$, $f = 1KHz$, $BW = 200Hz$				


©2002 Fairchild Semiconductor Corporation


Thermal Characteristics T _A =25°C unless otherwise noted					
Symbol	Parameter	Max.	Units		
P _D	Total Device Dissipation @T _A =25°C Derate above 25°C	350 2.8	mW mW/°C		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	mW/°C		
$R_{\theta JA}$ $R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W		

Package Dimensions

TO-92

