FAIRCHILD

SEMICONDUCTOR

CD4528BC Dual Monostable Multivibrator

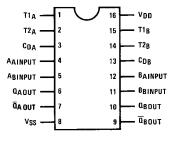
General Description

The CD4528BC is a dual monostable multivibrator. Each device is retriggerable and resettable. Triggering can occur from either the rising or falling edge of an input pulse, resulting in an output pulse over a wide range of widths. Pulse duration and accuracy are determined by external timing components Rx and Cx.

Features

- Wide supply voltage range: 3.0V to 18V
- Separate reset available
- Quiescent current = 5.0 nA/package (typ.) at 5.0 V_{DC}

October 1987


Revised January 2004

- Diode protection on all inputs
- Triggerable from leading or trailing edge pulse
- Capable of driving two low-power TTL loads or one lowpower Schottky TTL load over the rated temperature range

Ordering Code:

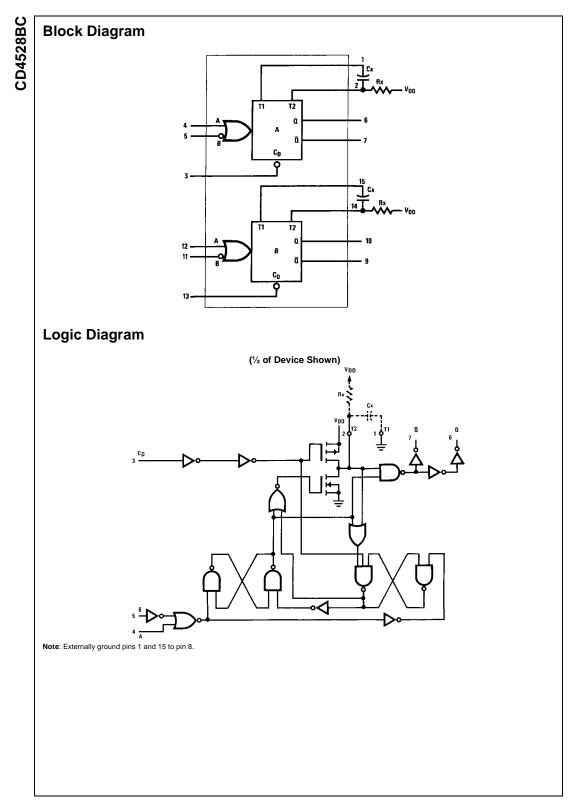
Order Number	Package Number	Package Description
CD4528BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4528BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Top View

Truth Table

	Inputs			Outputs			
Clear	Α	В	Q	Q			
L	Х	Х	L	Н			
Х	н	Х	L	н			
Х	Х	L	L	н			
н	L	\downarrow	л	ъ			
н	↑	Н	л	v			


H = HIGH Level L = LOW Level

= Transition from LOW-to-HIGH

↓ = Transition from HIGH-to-LOW ___ = One HIGH Level Pulse

-ur = One LOW Level Pulse X = Irrelevant

© 2004 Fairchild Semiconductor Corporation DS005998

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

(Note 2)	
DC Supply Voltage (V _{DD})	–0.5 V_{DC} to +18 V_{DC}
Input Voltage, All Inputs (V _{IN})	–0.5 V_{DC} to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T_S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

C DC Supply Voltage (V_{DD})

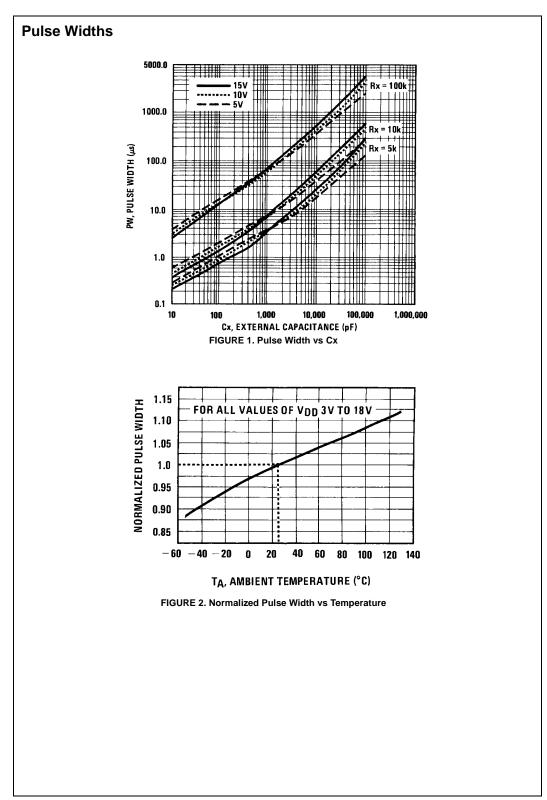
C Input Voltage (VIN)

0V to $V_{\text{DD}}\,V_{\text{DC}}$

3V to 15V

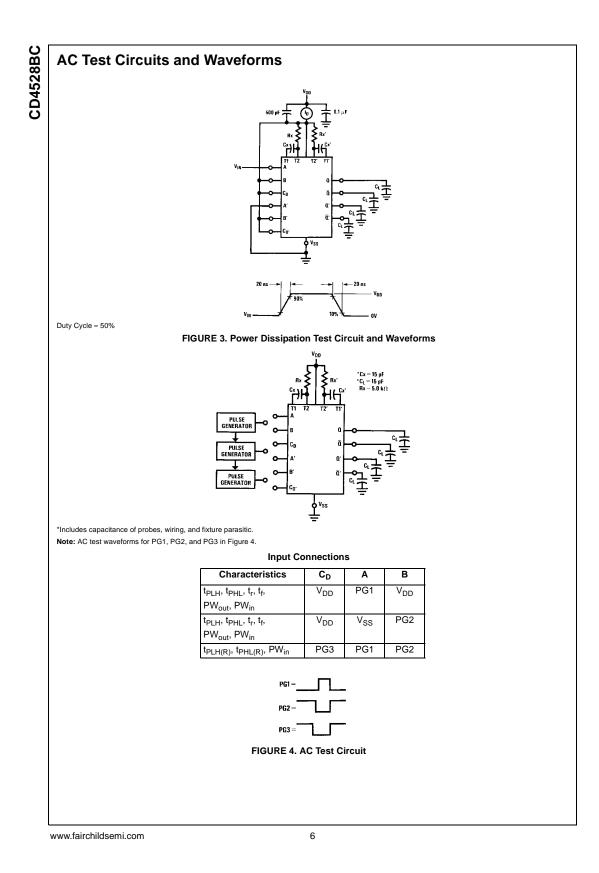
CD4528BC

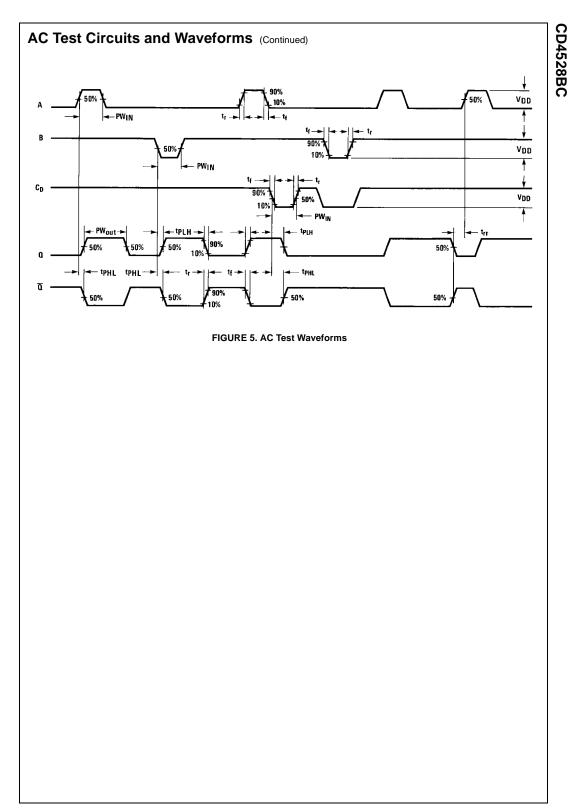
ated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

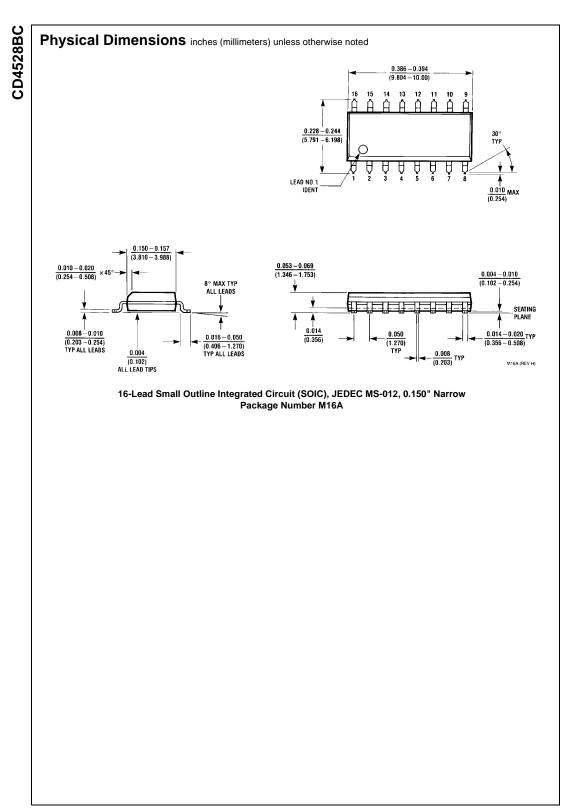

Note 2: $V_{SS} = 0V$ unless otherwise specified.

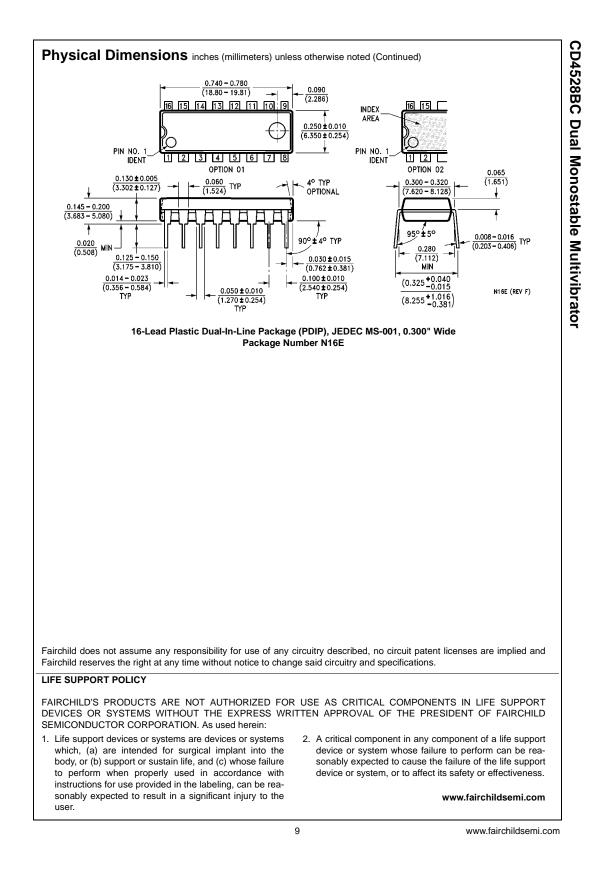
Symbol	Parameter	Conditions	-5	5°C		+25°C		+12	5°C	Units
Symbol	Faidilietei	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		5		0.005	5		150	
		$V_{DD} = 10V$		10		0.010	10		300	μA
		$V_{DD} = 15V$		20		0.015	20		600	
V _{OL}	LOW Level Output Voltage	$V_{DD} = 5V$		0.05			0.05		0.05	
		$V_{DD} = 10V$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	
V _{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5.0		4.95		
		$V_{DD} = 10V$	9.95		9.95	10.0		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15.0		14.95		
VIL	LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
		$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$		3.0		4.50	3.0		3.0	V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or 13.5V		4.0		6.75	4.0		4.0	
VIH	HIGH Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
		$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0	5.50		7.0		V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or 13.5V	11.0		11.0	8.25		11.0		
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.25		-0.2	-0.36		-0.14		
	(Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-0.62		-0.5	-0.9		-0.35		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-1.8		-1.5	-3.5		-1.1		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μA

Note 3: $V_{SS} = 0V$ unless otherwise specified.


Note 4: I_{OH} and I_{OL} are tested one output at a time.


Symbol	Parameter	t $t_{\rm F} = t_{\rm f} = 20$ ns, unless otherwise specified Conditions	Min	Тур	Max	Uni
t _r	Output Rise Time	$t_r = (3.0 \text{ ns/pF}) C_L + 30 \text{ ns}, V_{DD} = 5.0 \text{V}$		180	400	
		$t_r = (1.5 \text{ ns/pF}) \text{ C}_L + 15 \text{ ns}, \text{ V}_{DD} = 10.0 \text{ V}$		90	200	n
		$t_r = (1.1 \text{ ns/pF}) C_L + 10 \text{ ns}, V_{DD} = 15.0 \text{V}$		65	160	
t _f	Output Fall Time	$t_f = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}, V_{DD} = 5.0 \text{V}$		100	200	
		$t_f = (0.75 \text{ ns/pF}) \text{ C}_L + 12.5 \text{ ns}, \text{ V}_{DD} = 10 \text{ V}$		50	100	n
		$t_f = (0.55 \text{ ns/pF}) \text{ C}_L + 9.5 \text{ ns}, \text{ V}_{DD} = 15.0 \text{V}$		35	80	
t _{PLH}	Turn-Off, Turn-On Delay	t_{PLH} , t_{PHL} = (1.7 ns/pF) C _L + 240 ns, V _{DD} = 5.0V		230	500	
t _{PHL}	A or B to Q or Q	$t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 8 \text{ ns}, \text{ V}_{DD} = 10.0 \text{ V}$		100	250	n
	$Cx = 15 \text{ pF}, \text{ Rx} = 5.0 \text{ k}\Omega$	$t_{\text{PLH}},t_{\text{PHL}}$ = (0.5 ns/pF) C_{L} + 65 ns, V_{DD} = 15.0V		65	150	
	Turn-Off, Turn-On Delay	t_{PLH} , t_{PHL} = (1.7 ns/pF) C _L + 620 ns, V _{DD} = 5.0V		230	500	
	A or B to Q or Q	t_{PLH},t_{PHL} = (0.66 ns/pF) C_L + 257 ns, V_{DD} = 10.0V		100	250	ns
	$Cx = 100 \text{ pF}, \text{ Rx} = 10 \text{ k}\Omega$	$t_{\text{PLH}},t_{\text{PHL}}$ = (0.5 ns/pF) C_L + 185 ns, V_{\text{DD}} = 15.0V		65	150	
t _{WL}	Minimum Input Pulse Width	$V_{DD} = 5.0V$		60	150	
t _{WH}	A or B	$V_{DD} = 10.0V$		20	50	n
	$Cx = 15 \text{ pF}, \text{ Rx} = 5.0 \text{ k}\Omega$	$V_{DD} = 15V$		20	50	
	$Cx = 1000 \text{ pF}, \text{ Rx} = 10 \text{ k}\Omega$	$V_{DD} = 5.0V$		60	150	
		$V_{DD} = 10.0V$		20	50	n
		V _{DD} = 15.0V		20	50	
PW _{OUT}	Output Pulse Width Q or Q	V _{DD} = 5.0V		550		
001	For Cx < 0.01 μF (See Graph					
	for Appropriate V _{DD} Level)	$V_{DD} = 10.0V$		350		n
	$Cx = 15 \text{ pF}, \text{Rx} = 5.0 \text{ k}\Omega$	V _{DD} = 15.0V		300		
	For Cx > 0.01 μF Use	$V_{DD} = 5.0V$	15	29	45	
	$PW_{out} = 0.2 Rx Cx In [V_{DD} - V_{SS}]$	$V_{DD} = 10.0V$	10	37	90	μ
	$Cx = 10,000 \text{ pF}, \text{Rx} = 10 \text{ k}\Omega$	$V_{DD} = 15.0V$	15	42	95	
t _{PLH}	Reset Propagation Delay,	$V_{DD} = 5.0V$	-	325	600	
t _{PHL}	t _{PLH} , t _{PHL}	$V_{DD} = 10.0V$		90	225	n
THE	$Cx = 15 \text{ pF}, \text{Rx} = 5.0 \text{ k}\Omega$	$V_{DD} = 15.0V$		60	170	
	$Cx = 1000 \text{ pF}, \text{Rx} = 10 \text{ k}\Omega$	$V_{DD} = 5.0V$		7.0	-	
		$V_{DD} = 10.0V$		6.7		μ
		$V_{DD} = 15.0V$		6.7		
t _{RR}	Minimum Retrigger Time	$V_{DD} = 5.0V$		0		
	Cx = 15 pF, Rx = 5.0 kΩ	$V_{DD} = 10.0V$		0		
		$V_{DD} = 15.0V$		0		
	$Cx = 1000 \text{ pF}, \text{Rx} = 10 \text{ k}\Omega$	$V_{DD} = 5.0V$		0		n
		$V_{DD} = 10.0V$		0		
		$V_{DD} = 15.0V$		0		
Pulse Width	Match between Circuits	$V_{DD} = 5.0V$		6	25	
in the Same	Package	$V_{DD} = 10.0V$		8	35	%
	$0 \text{ pF}, \text{Rx} = 10 \text{ k}\Omega$	$V_{DD} = 15.0V$		8	35	


CD4528BC


www.fairchildsemi.com

www.fairchildsemi.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.