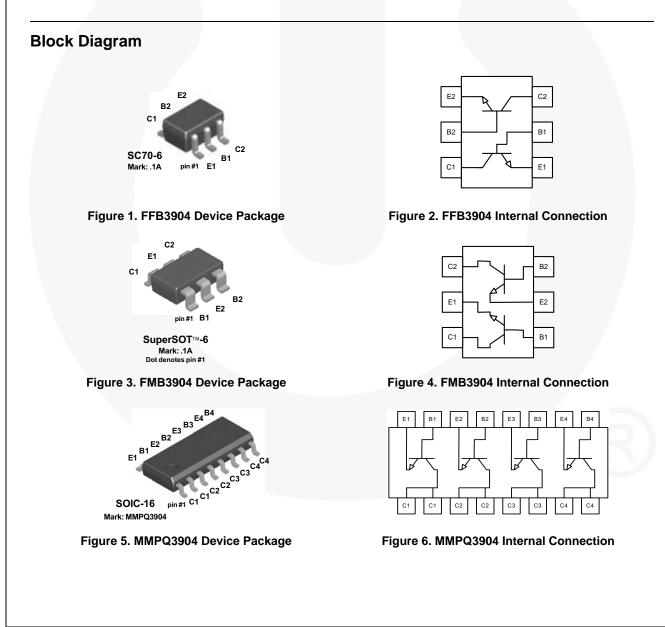


Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>


ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FFB3904 / FMB3904 / MMPQ3904 NPN Multi-Chip General Purpose Amplifier

Description

This device is designed as a general-purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier. Sourced from Process 23.

December 2013

Ordering Information

Part Number	Top Mark	Package	Packing Method
FFB3904	.1A	SC70 6L	Tape and Reel
FMB3904	.1A	SSOT 6L	Tape and Reel
MMPQ3904	MMPQ3904	SOIC 16L	Tape and Reel

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
۱ _C	Collector Current - Continuous	200	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

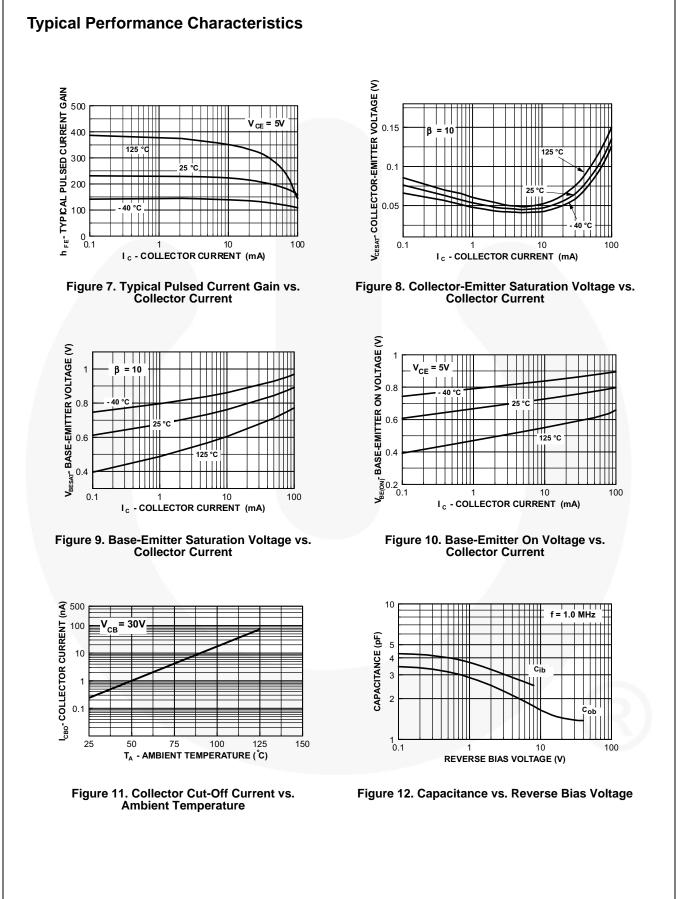
Note:

1. These ratings are based on a maximum junction temperature of 150°C. These are steady-state limits. Fairchild Semiconductor should be consulted on applications involving pulsed or low-duty cycle operations.

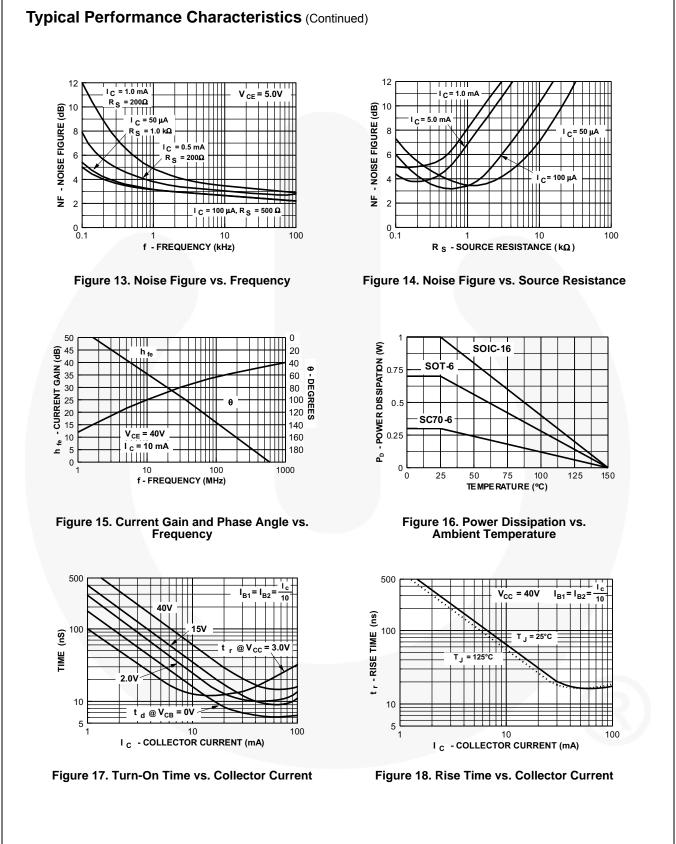
Thermal Characteristics⁽²⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

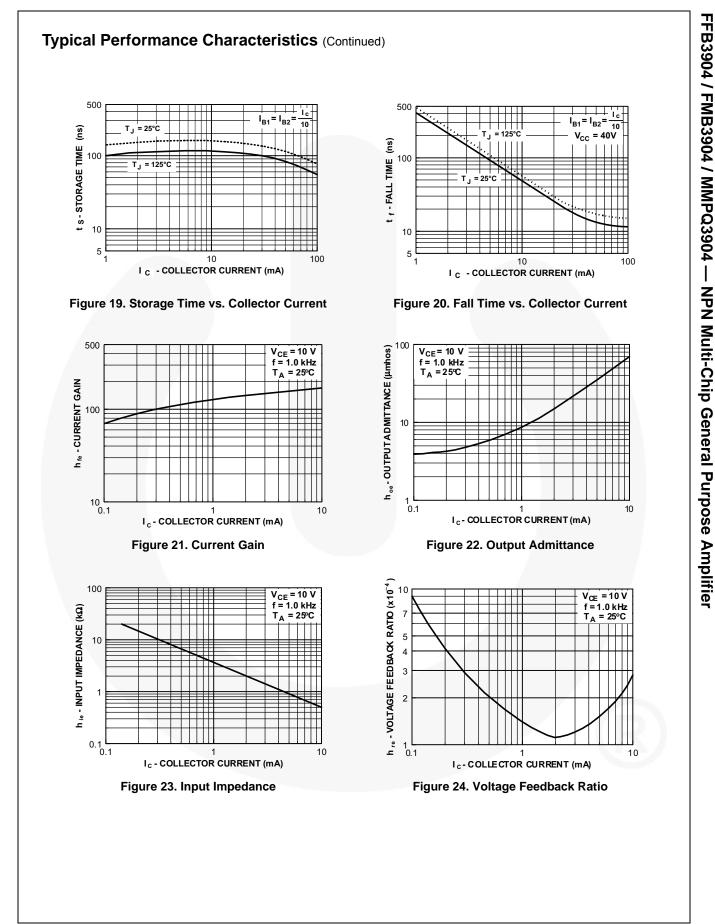
Symbol	Parameter	Max.			Unit
Symbol	Falameter	FFB3904	FMB3904	MMPQ3904	Om
P _D	Total Device Dissipation	300	700	1,000	mW
	Derate above 25°C	2.4	5.6	8.0	mW/°C
R _{θJA}	Thermal Resistance, Junction to Ambient	415	180		
	Thermal Resistance, Junction to Ambient, Effective 4 Die			125	°C/W
	Thermal Resistance, Junction to Ambient, Each Die			240	

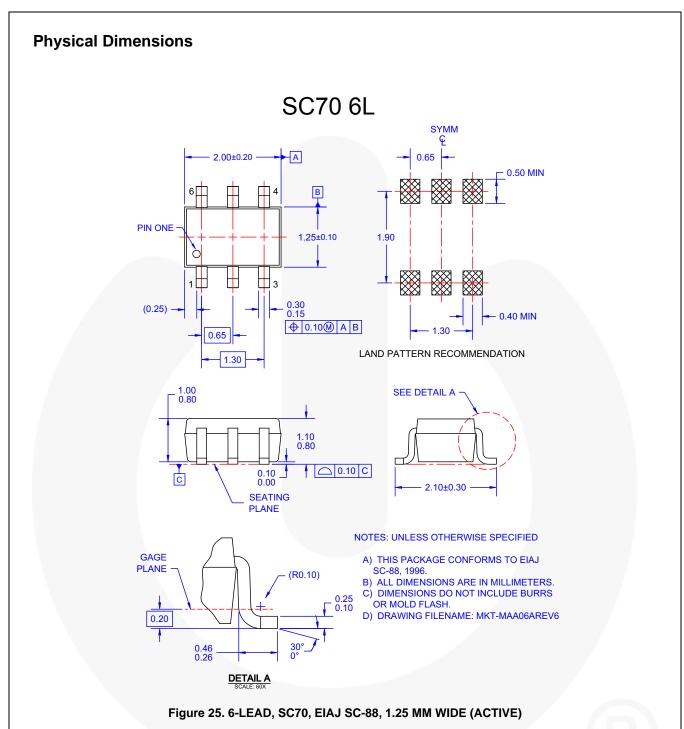

Note:

2. PCB size: FR-4 76 x 114 x 0.6T mm³ (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.


	al Characteris at T _A = 25°C unless							
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit	
Off Charac	cteristics							
V _{(BR)CEO}			I _C = 1.0 mA, I _B = 0	40			V	
V _{(BR)CBO}			I _C = 10 μA, I _E = 0	60			V	
V _{(BR)EBO}	Emitter-Base Breakdown Voltage		I _E = 10 μA, I _C = 0	6.0			V	
I _{BL}	Base Cut-Off Cur	rent	V _{CE} = 30 V, V _{BE} = -3 V			50	nA	
I _{CEX}	Collector Cut-Off	Current	V _{CE} = 30 V, V _{BE} = -3 V			50	nA	
	cteristics ⁽³⁾			1				
	DC Current Gain	FFB3904, FMB3904	I _C = 0.1 mA, V _{CE} = 1.0 V	40				
		MMPQ3904		30				
		FFB3904, FMB3904	I _C = 1.0 mA, V _{CE} = 1.0 V	70				
L		MMPQ3904		50				
h _{FE}		FFB3904, FMB3904	I _C = 10 mA, V _{CE} = 1.0 V	100		300		
		MMPQ3904		75				
		All Devices	I _C = 50 mA, V _{CE} = 1.0 V	60				
		All Devices	I _C = 100 mA, V _{CE} = 1.0 V	30				
V (act)	Collector-Emitter Saturation Voltage		I _C = 10 mA, I _B = 1.0 mA			0.2	v	
V _{CE} (sat)			I _C = 50 mA, I _B = 5.0 mA			0.3		
V (act)	Base-Emitter Saturation Voltage		I _C = 10 mA, I _B = 1.0 mA	0.65		0.85	V	
V _{BE} (sat)			I _C = 50 mA, I _B = 5.0 mA			0.95	v	
Small-Sigr	nal Characteristic	s (MMPQ3904 only)						
f _T	Current Gain-Bandwidth Product		I _C = 10 mA, V _{CE} = 20 V, f = 100 MHz		250		MHz	
C _{ob}	Output Capacitance		V _{CB} = 5.0 V, I _E = 0, f = 140 kHz		4.0		pF	
C _{ib}	Input Capacitance		V _{BE} = 0.5 V, I _C = 0, f = 140 kHz		8.0		pF	

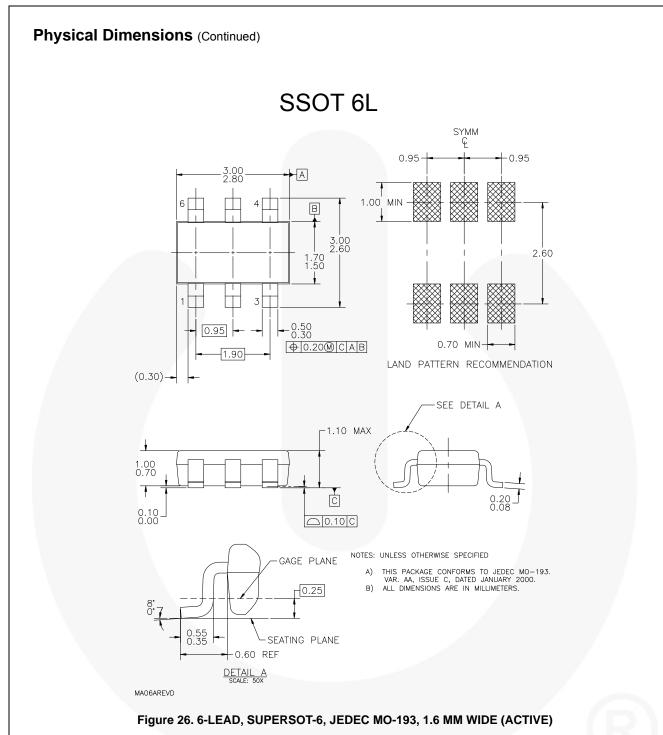
Note:


3. Pulse test: pulse width \leq 300 µs, duty cycle \leq 2.0%.



FFB3904 / FMB3904 / MMPQ3904 — NPN Multi-Chip General Purpose Amplifier

5

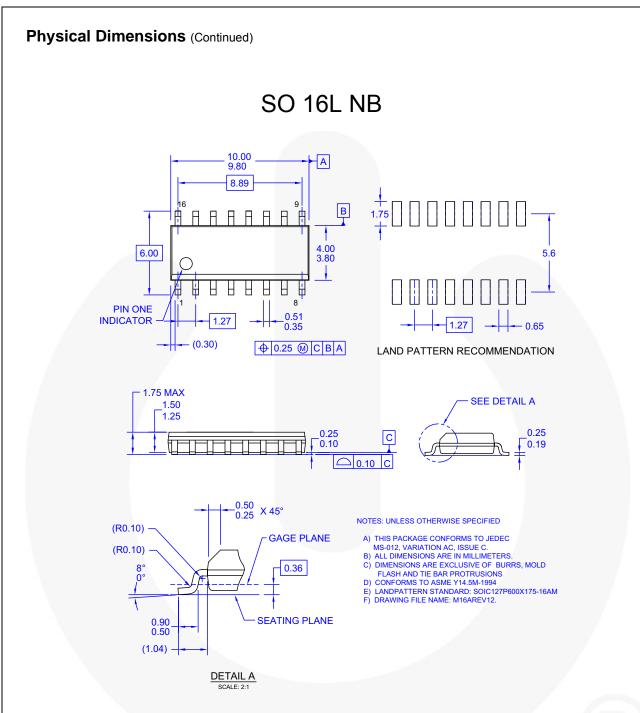


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/dwg/MA/MAA06A.pdf</u>.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: <u>http://www.fairchildsemi.com/packing_dwg/PKG-MAA06A.pdf</u>.

FFB3904 / FMB3904 / MMPQ3904 — NPN Multi-Chip General Purpose Amplifie



Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/dwg/MA/MA06A.pdf</u>.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: <u>http://www.fairchildsemi.com/packing_dwg/PKG-MA06A.pdf</u>.

FFB3904 / FMB3904 / MMPQ3904 — NPN Multi-Chip General Purpose Amplifie

Figure 27. 16-LEAD, SOIC, JEDEC MS-012, 0.150 inch, NARROW BODY (ACTIVE)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/dwg/M1/M16A.pdf</u>.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: <u>http://www.fairchildsemi.com/packing_dwg/PKG-M16A.pdf</u>.

FFB3904 / FMB3904 / MMPQ3904 — NPN Multi-Chip General Purpose Amplifie