

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]\square

FJP13009
 High-Voltage Fast-Switching NPN Power Transistor

Features

- High-Voltage Capability
- High Switching Speed

Applications

- Electronic Ballast
- Switching Regulator
- Motor Control
- Switched Mode Power Supply

Description

The FJP13009 is a $700 \mathrm{~V}, 12$ A NPN silicon epitaxial planar transistor. The FJP13009 is available with multiple $h_{\text {FE }}$ bin classes for ease of design use. The FJP13009 is designed for high speed switching applications which utilizes the industry standard TO-220 package offering flexibility in design and excellent power dissipation.

Ordering Information

Part Number ${ }^{(1)}$	Top Mark	Package	Packing Method
FJP13009TU	J13009	TO-220 3L	Rail
FJP13009H2TU	J13009-2	TO-220 3L	Rail

Notes:

1. The affix "-H2" means the $h_{F E}$ classification. The suffix "-TU" means the tube packing method.

Absolute Maximum Ratings ${ }^{(2)}$

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage	700	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	400	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage	9	V
I_{C}	Collector Current (DC)	12	A
I_{CP}	Collector Current (Pulse)	24	A
I_{B}	Base Current	6	A
P_{D}	Total Device Dissipation $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	100	W
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

Note:

2. These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$. These are steady-state limits. Fairchild Semiconductor should be consulted on application involving pulsed or low-duty-cycle operations.

Electrical Characteristics

Values are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
$\mathrm{V}_{\text {CEO }}$ (sus)	Collector-Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	400			V
$\mathrm{I}_{\text {EBO }}$	Emitter Cut-Off Current	$\mathrm{V}_{\mathrm{EB}}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$			1	mA
$\mathrm{h}_{\text {FE1 }}$	DC Current Gain ${ }^{(3)}$	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}$	8		40	
$\mathrm{h}_{\text {FE2 }}$		$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}$	6		30	
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage ${ }^{(3)}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A}$			1.0	V
		$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.6 \mathrm{~A}$			1.5	
		$\mathrm{I}_{\mathrm{C}}=12 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=3 \mathrm{~A}$			3.0	
V_{BE} (sat)	Base-Emitter Saturation Voltage ${ }^{(3)}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A}$			1.2	V
		$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.6 \mathrm{~A}$			1.6	
C_{ob}	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=0.1 \mathrm{MHz}$		180		pF
f_{T}	Current Gain Bandwidth Product	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}$	4			MHz
t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=1.6 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{L}}=15.6 \Omega \end{aligned}$			1.1	$\mu \mathrm{s}$
$\mathrm{t}_{\text {STG }}$	Storage Time				3.0	
t_{F}	Fall Time				0.7	

Note:
3. Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$

$\mathbf{h}_{\text {FE }}$ Classification

Classification	$\mathbf{H 1}$	H2
$\mathrm{h}_{\text {FE1 }}$	$8 \sim 17$	$15 \sim 28$

Typical Performance Characteristics

Figure 1. DC Current Gain

Figure 3. Collector Output Capacitance

Figure 5. Turn-Off Time

Figure 2. Base-Emitter Saturation Voltage and Collector-Emitter Saturation Voltage

Figure 4. Turn-On Time

Figure 6. Forward Bias Safe Operating Area

Typical Performance Characteristics (Continued)

Figure 7. Reverse Bias Safe Operating Area

Figure 8. Power Derating

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

