

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

September 2015

KSA992 PNP Epitaxial Silicon Transistor

Features

- Audio Frequency Low-Noise Amplifier
- Complement to KSC1845

Ordering Information

Part Number	Top Mark	Package	Packing Method
KSA992FBU	A992	TO-92 3L	Bulk
KSA992FTA	A992	TO-92 3L	Ammo
KSA992FATA	A992	TO-92 3L	Ammo
KSA992FBTA	A992	TO-92 3L	Ammo

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit	
V _{CBO}	Collector-Base Voltage	-120	V	
V _{CEO}	Collector-Emitter Voltage	-120	V	
V _{EBO}	Emitter-Base Voltage	-5	V	
I _C	Collector Current	-50	mA	
I _B	Base Current	-10	mA	
TJ	Junction Temperature	150	°C	
T _{STG}	Storage Temperature	-55 to 150	°C	

Thermal Characteristics(1)

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Value	Unit
D	Power Dissipation	500	mW
P _D	Derate Above 25°C	4	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	250	°C/W

Note:

1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-Off Current	$V_{CB} = -120 \text{ V}, I_{E} = 0$			-50	nA
I _{CEO}	Collector Cut-Off Current	$V_{CE} = -100 \text{ V}, I_{B} = 0$			-1	μΑ
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = -5 \text{ V}, I_{C} = 0$			-50	nA
h _{FE1}	- DC Current Gain	$V_{CE} = -6 \text{ V}, I_{C} = -0.1 \text{ mA}$	150	500		
h _{FE2}	DC Current Gain	$V_{CE} = -6 \text{ V}, I_{C} = -1 \text{ mA}$	200	500	800	
V _{BE} (on)	Base-Emitter On Voltage	$V_{CE} = -6 \text{ V}, I_{C} = -1 \text{ mA}$	-0.55	-0.61	-0.65	V
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}$		-0.09	-0.30	V
f _T	Current Gain Bandwidth Product	$V_{CE} = -6 \text{ V}, I_{C} = -1 \text{ mA}$	50	100		MHz
C _{ob}	Output Capacitance	$V_{CB} = -30 \text{ V}, I_{E} = 0,$ f = 1 MHz		2	3	pF
NV	Noise Voltage	$V_{CE} = -5.0 \text{ V}, I_{C} = -1.0 \text{ mA}, \\ R_{G} = 100 \text{k} \Omega, G_{V} = 80 \text{ dB}, \\ f = 10 \text{ Hz to } 1.0 \text{ kHz}$		25	40	mV

h_{FE} Classification

Classification	Р	F	FA	FB	E
h _{FE2}	200 ~ 400	300 ~ 600	300 ~ 470	430 ~ 600	400 ~ 800

Typical Performance Characteristics

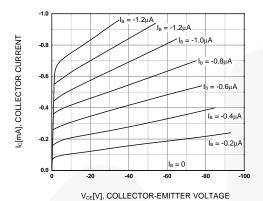


Figure 1. Static Characteristic

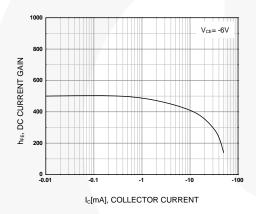


Figure 3. DC Current Gain

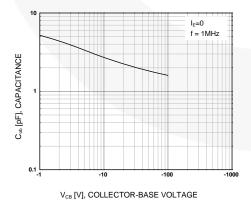


Figure 5. Collector Output Capacitance

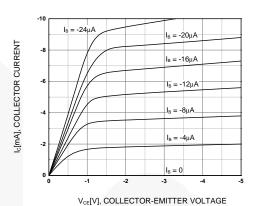


Figure 2. Static Characteristic

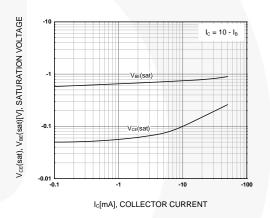


Figure 4. Base-Emitter Saturation Voltage and Collector-Emitter Saturation Voltage

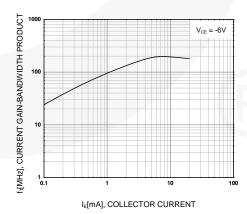


Figure 6. Current Gain Bandwidth Product

Typical Performance Characteristics (Continued)

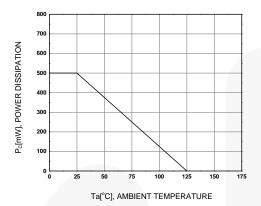


Figure 7. Power Derating

Physical Dimensions

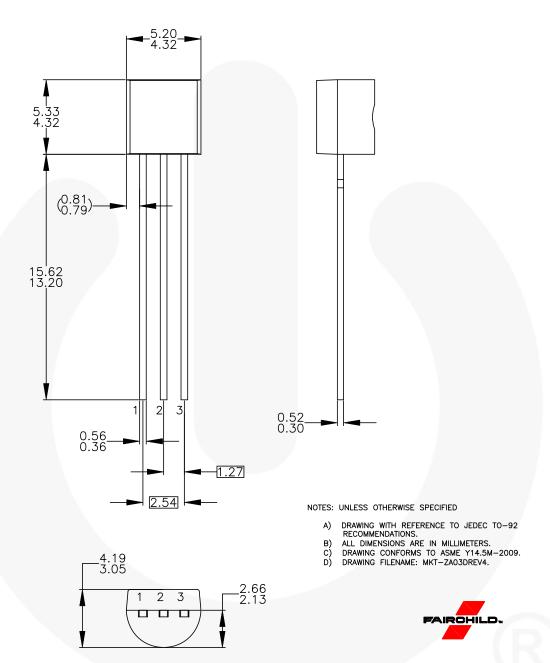
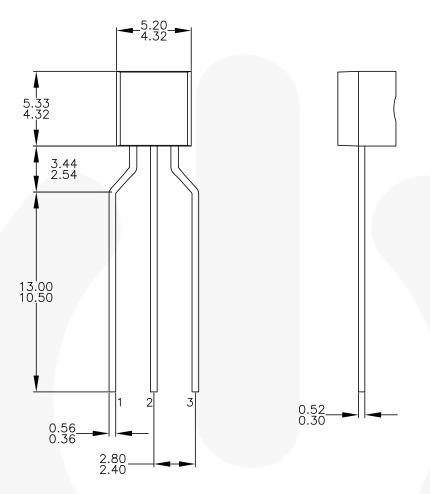
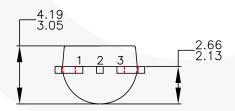




Figure 8. 3-Lead, TO-92, JEDEC TO-92 Compliant Straight Lead Configuration, Bulk Type

Physical Dimensions (Continued)

NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3FREV3.
 FAIRCHILD SEMICONDUCTOR.

Figure 9. 3-Lead, TO-92, Molded, 0.2 In Line Spacing Lead Form, Ammo, Tape and Reel Type