

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

September 2011

NPN Epitaxial Silicon Transistor

Features

- TV Vertical Deflection Output
- Complement to KSA940
- Collector-Base Voltage : V_{CBO} = 150V

1.Base 2.Collector 3.Emitter

Absolute Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	150	V
V _{CEO}	Collector-Emitter Voltage	150	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current	1.5	А
P _C	Collector Dissipation (T _C = 25°C)	25	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 55 to 150	°C

Electrical Characteristics $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 500 \mu A, I_E = 0$	150			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{mA}, I_B = 0$	150			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 500 \mu A, I_C = 0$	5			V
I _{CBO}	Collector Cut-off Current	$V_{CB} = 120V, I_{E} = 0$			10	μΑ
h _{FE}	DC Current Gain	$V_{CE} = 10V, I_{C} = 0.5A$	40	75	140	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = 500 \text{mA}, I_B = 50 \text{mA}$			1	V
f _T	Current Gain Bandwidth Product	$V_{CE} = 10V, I_{C} = 0.5A$		4		MHz
C _{ob}	Output Capacitance	$V_{CB} = 10V, I_{E} = 0,$ f = 1MHz		50		pF

h_{FE} Classification

Classification	H1	H2
h _{FE}	40 ~ 80	60 ~ 125

Typical Performance Characteristics

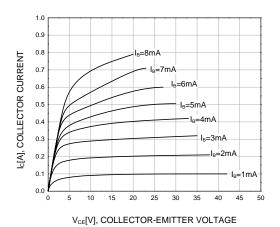


Figure 1. Static Characteristic

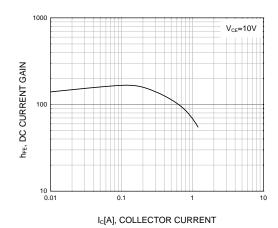


Figure 2. DC current Gain

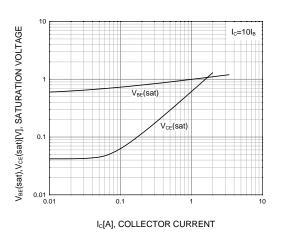


Figure 3. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

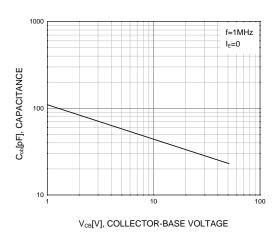


Figure 4. Collector-Emitter On Voltage

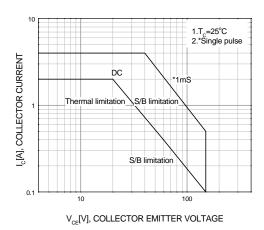


Figure 5. Safe Operating Area

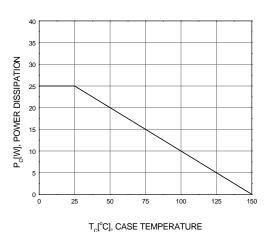
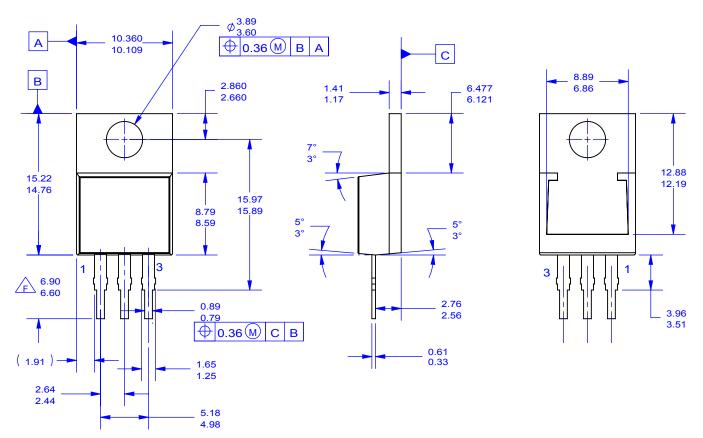
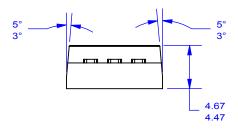
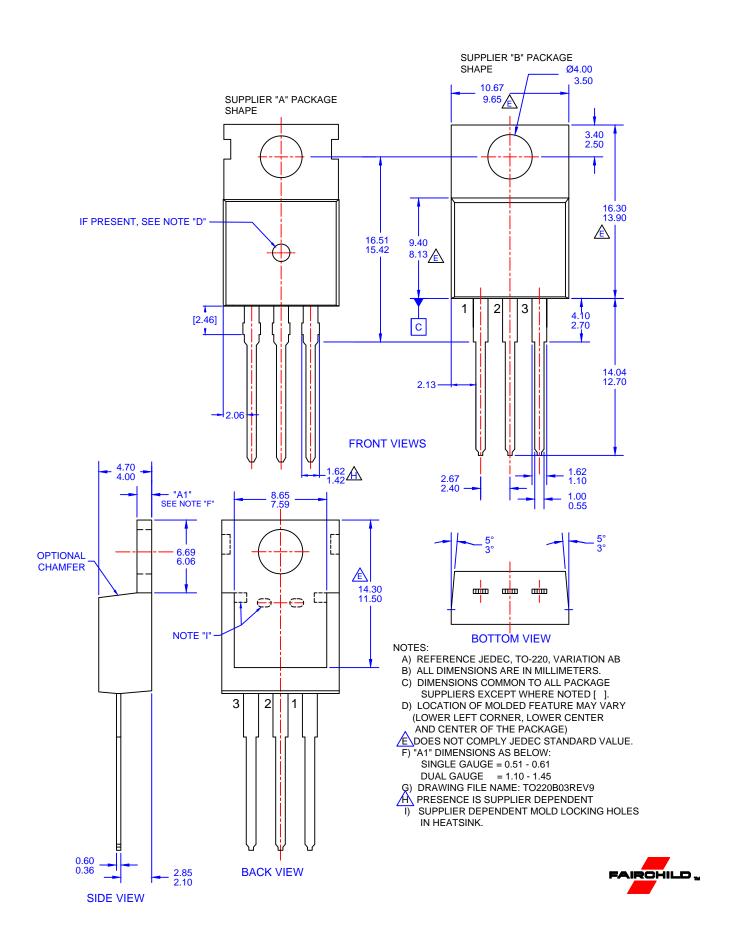




Figure 6. Power Derating



NOTES:

- A. PACKAGE REFERENCE: JEDEC TO220 VARIATION AB
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS,
 MOLD FLASH AND TIE BAR PROTRUSIONS.
- E. FAIRCHILD SEMICONDUCTOR.

DOES NOT COMPLY JEDEC STD VALUE.

G. DRAWING FILE NAME: TO220U03REV1

