

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

Ordering Information

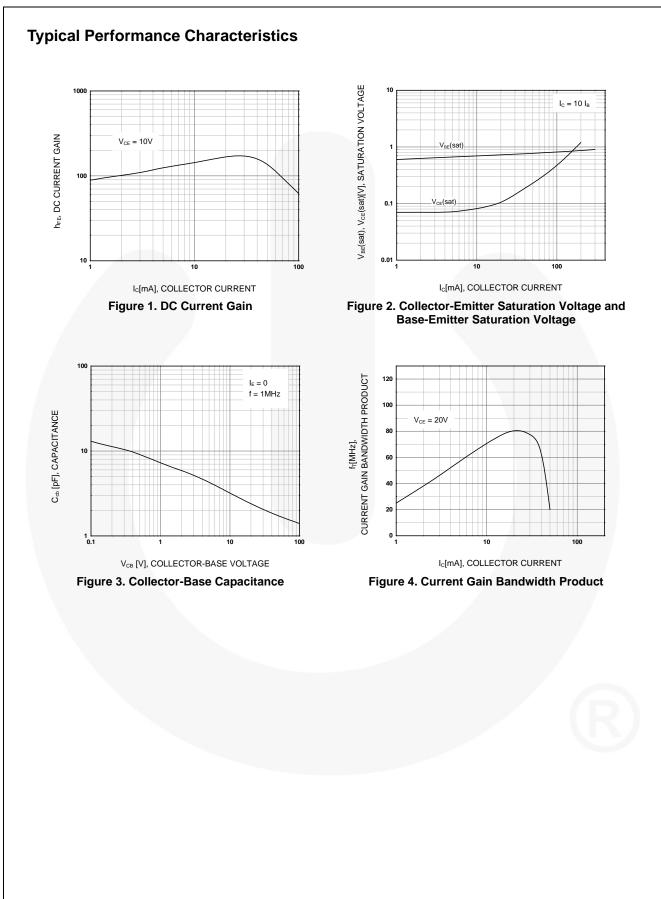
Features

Part Number	Top Mark	Package	Packing Method
KSP42BU	KSP42	TO-92 3L	Bulk
KSP42TA	KSP42	TO-92 3L	Ammo
KSP43BU	KSP43	TO-92 3L	Bulk
KSP43TA	KSP43	TO-92 3L	Ammo

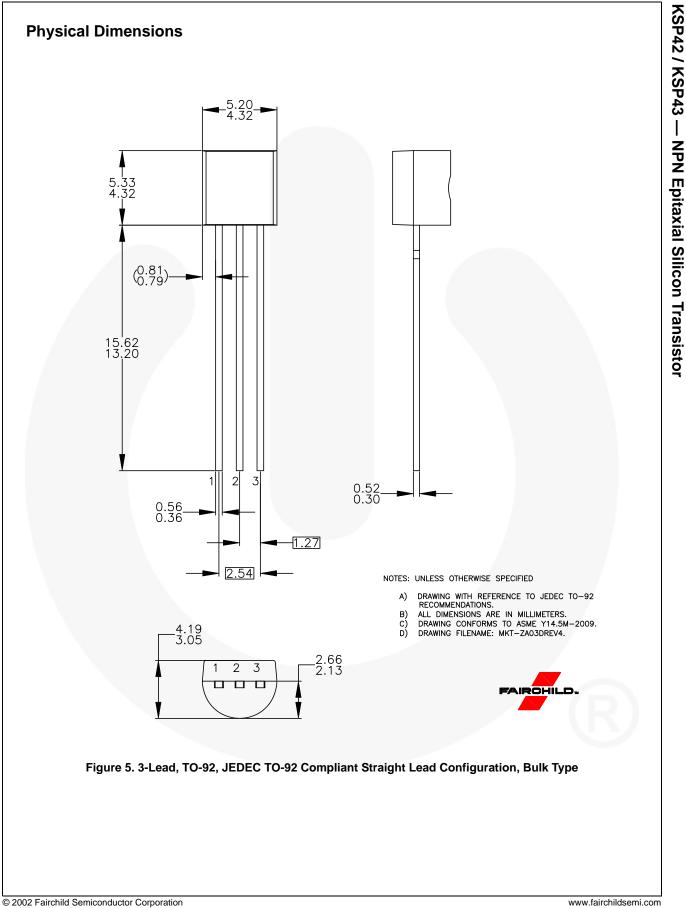
Absolute Maximum Ratings

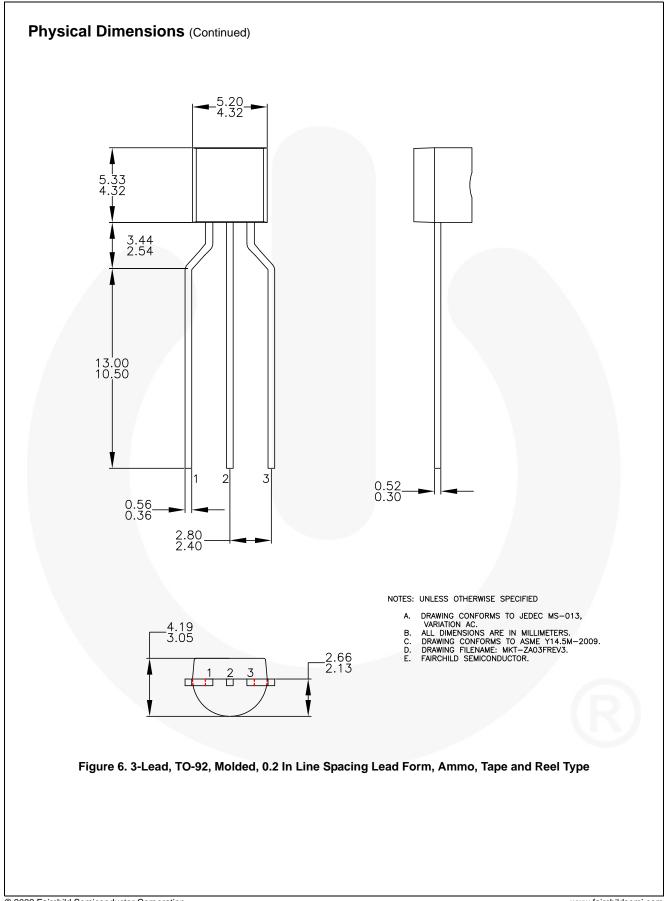
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit		
V _{CBO}	Collector Deco Valtare	KSP42	300		
	Collector-Base Voltage	KSP43	200	- V	
V _{CEO}	Collector Emitter Voltage	KSP42	300	V	
	Collector-Emitter Voltage	KSP43	200	v	
V _{EBO}	Emitter-Base Voltage		6	V	
Ι _C	Collector Current		500	mA	
P _C	Collector Power Dissipation		625	mW	
TJ	Junction Temperature		150	°C	
T _{STG}	Storage Temperature		-55 to 150	°C	


Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.


Symbol	Parameter		Conditions	Min.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown	KSP42	Ι _C = 100 μA, Ι _E = 0	300		v
	Voltage	KSP43		200		
BV _{CEO}	Collector-Emitter	KSP42	I _C = 1 mA, I _B = 0	300		V
	Breakdown Voltage ⁽¹⁾	KSP43		200		
BV_{EBO}	Emitter-Base Breakdown Voltage		$I_{E} = 100 \ \mu A, \ I_{C} = 0$	6		V
I _{CBO}	Collector Cut-Off Current	KSP42	$V_{CB} = 200 \text{ V}, I_E = 0$		100	nA
	Collector Out-Oil Outrent	KSP43	$V_{CB} = 160 \text{ V}, \text{ I}_{E} = 0$		100	
I _{EBO}	Emitter Cut-Off Current	KSP42	$V_{EB} = 6 V, I_{C} = 0$		100	- nA
		KSP43	$V_{EB} = 4 V, I_{C} = 0$		100	
h _{FE}	DC Current Gain ⁽¹⁾		$V_{CE} = 10 \text{ V}, I_{C} = 1 \text{ mA}$	25		
			$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$	40		
			V_{CE} = 10 V, I _C = 30 mA	40		
V _{CE} (sat)	Collector-Emitter Saturation Voltage ⁽¹⁾		$I_{\rm C} = 20 \text{ mA}, I_{\rm B} = 2 \text{ mA}$		0.5	V
V _{BE} (sat)	Base-Emitter Saturation Voltage ⁽¹⁾		$I_{C} = 20 \text{ mA}, I_{B} = 2 \text{ mA}$		0.9	V
C _{ob}	Output Capacitance	KSP42	V _{CB} = 20 V, I _E = 0, f = 1 MHz		3	– pF
	Output Capacitance	KSP43			4	
f _T	Current Gain Bandwidth Product		$V_{CE} = 20 \text{ V}, I_{C} = 10 \text{ mA},$ f = 100 MHz	50		MHz


Note:

1. Pulse test: pulse width \leq 300 µs, duty cycle \leq 2%.

KSP42 / KSP43 — NPN Epitaxial Silicon Transistor

KSP42 / KSP43 — NPN Epitaxial Silicon Transistor