

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

September 2015

KSP44 / KSP45 NPN Epitaxial Silicon Transistor

Features

- · High-Voltage Transistor
- Collector-Emitter Voltage: V_{CEO} = KSP44: 400 V KSP45: 350 V

Ordering Information

Part Number	Top Mark	Package	Packing Method
KSP44BU	KSP44	TO-92 3L	Bulk
KSP44TA	KSP44	TO-92 3L	Ammo
KSP44TF	KSP44	TO-92 3L	Tape and Reel
KSP45TA	KSP45	TO-92 3L	Ammo

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter		Value	Unit	
V _{CBO}	Collector-Base Voltage	KSP44	500	V	
		KSP45	400		
V _{CEO}	Collector-Emitter Voltage	KSP44	400	V	
		KSP45	350		
V _{EBO}	Emitter-Base Voltage		6	V	
I _C	Collector Current		300	mA	
T _J	Junction Temperature		150	°C	
T _{STG}	Storage Temperature		-55 to 150	°C	

Thermal Characteristics(1)

Values are at T_A = 25°C unless otherwise noted.

Symbol	Parameter		Value	Unit
P_{D}	Power Dissipation	T _A = 25°C	625	mW
	T _C = 2	T _C = 25°C	1.5	W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		200	°C/W

Note:

1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics

Values are at T_A = 25°C unless otherwise noted.

Symbol	Parameter		Conditions	Min.	Max.	Unit
BV _{CBO}	Collector Base Breakdown	KSP44	I _C = 100 μA, I _E = 0	500		V
		KSP45		400		
BV _{CEO}	Collector Emitter	KSP44	I _C = 1 mA, I _B = 0	400		V
PACEO		KSP45		350		
BV _{EBO}	Emitter-Base Breakdown Volt	age	$I_E = 100 \mu A, I_C = 0$	6		V
lana	Collector Cut-Off Current KSP44		V _{CB} = 400 V, I _E = 0		0.1	
I _{CBO}	Collector Cut-Oil Current	KSP45	V _{CB} = 320 V, I _E = 0		0.1	μΑ
1	Collector Cut-Off Current	KSP44	V _{CE} = 400 V, I _B = 0		0.5	μА
I _{CES}		KSP45	V _{CE} = 320 V, I _B = 0		0.5	
I _{EBO}	Emitter Cut-Off Current		$V_{EB} = 4 \text{ V}, I_{C} = 0$		0.1	μΑ
	DC Current Gain ⁽²⁾		$V_{CE} = 10 \text{ V}, I_{C} = 1 \text{ mA}$	40		
h _{FE}			V_{CE} = 10 V, I_{C} = 10 mA	50	200	
			V_{CE} = 10 V, I_{C} = 50 mA	45		1
			V _{CE} = 10 V, I _C = 100 mA	40		
	Collector-Emitter Saturation Voltage ⁽²⁾		I _C = 1 mA, I _B = 0.1 mA	//	0.40	V
V _{CE} (sat)			I _C = 10 mA, I _B = 1 mA	4	0.50	
			I _C = 50 mA, I _B = 5 mA		0.75	
V _{BE} (sat)	Base-Emitter Saturation Voltage ⁽²⁾		I _C = 10 mA, I _B = 1 mA		0.75	V
C _{ob}	Output Capacitance		V _{CB} = 20 V, I _E = 0, f = 1 MHz		7	pF

Note

2. Pulse test: pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$

Typical Performance Characteristics V_{CE}=10V V_∞=150V I_∞/I_g=10 T_g=25 °C V_{BE}(off)=4V 140 120 DC CURRENT GAIN f[us], TIME 60 40 -20 100 100 I_C[mA], COLLECTOR CURRENT I_C[mA], COLLECTOR CURRENT Figure 1. DC Current Gain Figure 2. Turn-On Switching Times T_a=25 ℃ V_{CC}=150V I_C/I_B=10 C_{ib}[pF], C_{ob}[pF], CAPACITANCE T_a=25 ℃ 100 Cib ([us], TIME 10 Ic[mA], COLLECTOR CURRENT $V_{CB}[V]$, COLLECTOR-BASE VOLTAGE Figure 3. Turn-Off Switching Times Figure 4. Capacitance T_a=25 ℃ T_a=25 ℃ VoE[V] COLLECTOR EMITTER VOLTAGE I_c=10mA I_c=50mA $V_{BE}(sat) @I_C/I_B=10$ [V], VOLTAGE 0.3 V_{BE}(on) @V_{CE}=10V 0.2 V_{CE}(sat)@I_C/I_B=10

0.0 L 0.1

I_c[mA], COLLECTOR CURRENT

Figure 5. On Voltage

0.0 L 10

 $I_{\text{C}}[\text{mA}]$, COLLECTOR CURRENT

Figure 6. Collector Saturation Region

Typical Performance Characteristics (Continued)

Figure 7. High-Frequency Current Gain

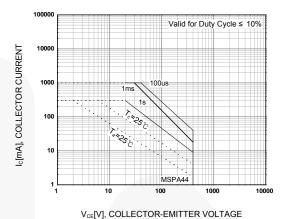


Figure 8. Safe Operating Area

Physical Dimensions

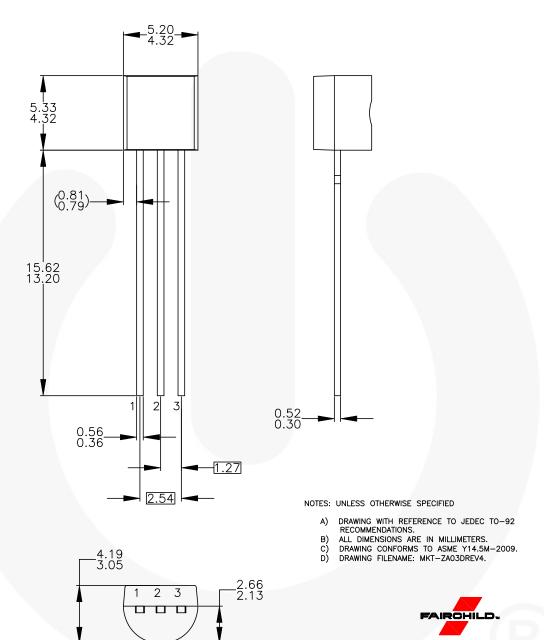
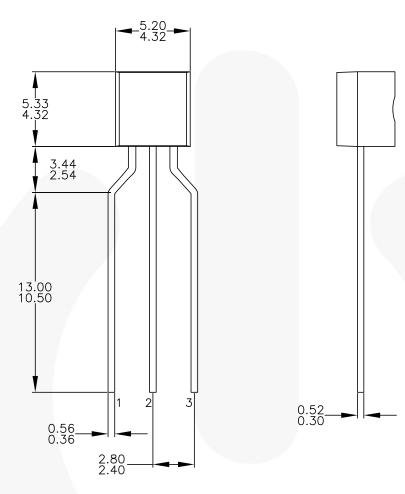
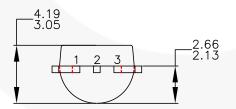




Figure 9. 3-Lead, TO-92, JEDEC TO-92 Compliant Straight Lead Configuration, Bulk Type

Physical Dimensions (Continued)

NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZA03FREV3.
 FAIRCHILD SEMICONDUCTOR.

Figure 10. 3-Lead, TO-92, Molded, 0.2 In Line Spacing Lead Form, Ammo, Tape and Reel Type