CA9 1
Carbon Potentiometers CA
CE9

Cermet Potentiometers CE

CARBON - CA9 ${ }^{\text {P }}$

9 mm carbon potentiometers with plastic housing and Ingress Protection rating type IP 54 (high level of protection against dust and also against water splashing), according to IEC 60529. Plastic materials can be self-extinguishable according to UL 94 V-0 under request.

Through-hole and SMD configurations are available. Terminals and collector are normally manufactured in tinned brass, although versions with steel terminals are also available under request. Terminals for through-hole models can be provided straight or crimped, which helps hold the component to the PCB during soldering.

Tapers can be linear, log and antilog; special tapers can also be studied.

ACP's potentiometers can be adjusted from either the front or the back, both in the horizontal and the vertical adjustment types. Thumbwheels and shafts can be ordered either separately or already inserted in the potentiometer.

Potentiometers can be manufactured in a wide range of possibilities regarding:

- Resistance value.
- Tolerance.
- Tapers / variation laws.
- Pitch.
- Positioning of the wiper (standard is at 50\% rotation).
- Housing and rotor color.
- Mechanical life.
- Click effect (up to 20 detents available).
- Self-extinguishable plastic parts according to UL 94 V-0.

Applications

9 mm potentiometers are mainly used in control applications, in different markets:

- Industrial: Timers and relays, dimmers, adjustment of output.
- Electronic appliances: volume regulation, temperature controls and function selection.
- Automotive: Lighting regulation (position adjustment and sensing for headlights), dimmers, seat heating controls.

CERMET - CE9

9 mm cermet potentiometers with plastic housing and Ingress Protection rating type IP 54 (high level of protection against dust and also against water splashing), according to IEC 60529. Plastic materials (housing and rotor) are self-extinguishable according to UL 94 V-0 for ACP's cermet potentiometers.

Cermet potentiometers have better thermal stability, allow for higher thermal dissipation and withstand higher temperatures than carbon potentiometers.

Through-hole and SMD configurations are available. Terminals and collector are manufactured in tinned brass, although versions with steel terminals are also available under request. Terminals for through-hole models can be provided straight or crimped, which helps hold the component to the PCB during soldering.

Tapers can be linear, log and antilog; special tapers can also be studied.

ACP's potentiometers can be adjusted from either the front or the back, both in the horizontal and the vertical adjustment types. Thumbwheels and shafts can be ordered either separately or already inserted in the potentiometer.

Potentiometers can be manufactured in a wide range of possibilities regarding:

- Resistance value.
- Tolerance.
- Tapers / variation laws.
- Pitch.
- Positioning of the wiper (the standard is at 50\%).
- Housing and rotor color.
- Mechanical life
- Click effect (up to 20 detents available).

Applications

9 mm cermet potentiometers are used in applications where either the operating temperature is high, or where the application requires product with excellent ohmic value stability:

- Electronic appliances: temperature controls.
- Automotive: climate controls, position sensors, seat heating controls.
- Industrial electronics: multimeters, oscilloscopes, time relays, measurement and test equipment.

CA9 四 CE9 困 HOW TO ORDER

EXAMPLE：CA9MH2，5－10KA2020 SNP PI WT－9005－BA
EXAMPLE：CE9MH2，5－10KA2020 SNP PI WT－9005－BA－V0

Customized products：A drawing is requested when ordering a customized product．Series，rotor，model and total resistive value are indicated before the code that includes all special specifications．Example：CA9PH2，5－10K CODE C00111．

－CA9－CE9												
2 －Rotors												
C D	E	J		K	KA	M	MA		MT	P	R	Y
3 －Model and pitch												
H2，5	H3，8	HS	3，8	H5		HSMD	V7，5		10	VK10		VR10
MAV10	MTV10	0 V	VSMD		SMD	NT－9002	VSM	D．．．CY		SMD．．．C	CY WT－9	－9002
4 －Packaging				Trough－hole			SMD models					
Bulk				（blank）．．．．${ }^{(1)}$			（blank）．．．${ }^{(1)}$					
T\＆R（Tape and 13＂reel）				T\＆R			T\＆R					
T\＆R（Tape and 15＂reel）				T\＆R15			T\＆R15					
（1）If blank，bulk packaging is implied．												
5 －Resistance value												
100 200 2	220』	250，	470Ω	500Ω	$1 \mathrm{~K} \Omega$	2KS ．．．	500K 2	$1 \mathrm{M} \Omega$	2M 2	2M2 2	4M7	5 M ，
100200	220	250	470	500	1K	2K	500K	1M	2M	2M2	4M7	5M

6 －Resistance law／taper

Lin－Linear	A		
Log－Logarithmic	B		
Antilog－Antilogarithmic	C		
－Special tapers have codes assigned：	CODE YXXXXX		
7 －Tolerance			
$\pm 20 \%$	$\pm 30 \%$	$+50 \%,-30 \%$	$\pm 10 \%$
2020	3030	5030	1010

$\mathbf{8}$－Operating Life（Cycles）		（leave blank）
Standard（1．000 cycles）		
Long life：LV＋the number of cycles．ex：LV10 for 10.000 cycles．（others on request）	LVXX：ex：LV10	
$\mathbf{9}$－Cut Track－Open circuit．	PCI	
Open circuit at beginning of track，fully CCW	PCF	
Open circuit at end of track，fully CW	PIP	
Pin in Paste option（Reflow Soldering）		

10 －Detents（DT）

One detent at the beginning	DTI
One detent at the end	DTF
X number of detents	XDT：10DT

Special detents are available on request：If you need to assign a voltage value to each detent，please inquire．

Rotors are drawn in their standard positioning, 50% of rotation. Alternative delivery positioning can be requested. Accessories in this catalogue are designed for the M rotor, unless otherwise stated.

Models

All models shown here have the most common rotor for 9 mm potentiometers: the M rotor. Different rotors are available from the menu above.

VR10

VSMD

VSMD WT-9002

VSMD...CY
VSMD...CY WT-9002

GANGED

GANGED: Set of potentiometers in a row that allows for simultaneous adjustment of all of them through one shaft. Recommended potentiometer model is H2,5. MTX2 (2 potentiometers), MTX4 (4), MTX6 (6), MTX8 (8).

Model	MTX2	MTX4	MTX6	MTX8
Shaft	$9048,9074,9076$	9039,9051	9018	9056

Tapers

The standard taper is linear (A). Log (B) and Antilog (C) tapers are also available, as well as special tapers according to customer's specifications. For example, a special taper can be matched with a potentiometer with detents (click effect) to guarantee a value in a specific position - see "detents" section.-

REGULAR TAPERS
SPECIAL TAPERS

Rotation angle

The cut track is an area with very high resistive value, resulting in an open circuit. It is widely used in lighting applications. Mechanical life with cut track needs to be confirmed.
$\mathrm{PCI}=$ Cut at initial position, when the potentiometer is turned fully counter clockwise.
PCF = Cut at final position, when the potentiometer is turned fully clockwise.
Other positions are available on request.
PCl
PCF

Potentiometers

with detents
ACP's patented detent (DT) feature is especially suitable for control applications where the end used will turn a knob inserted in the potentiometer. Detents can be used to add a click feeling to the turning of the potentiometer or to control the position in which the wiper is placed, assuring a particular output value with a narrow tolerance.

Detents can be light or strong, or even a combination of different feelings. They can be evenly distributed along the angle (standard) or tailored to match customers' request. They can also be combined with special tapers: constant value areas, open circuit zone, different slopes, etc. One common example is a potentiometer with detents and matching non-overlapping voltage values in specific angular positions, used to feed in a voltage value to a microprocessor:

Example of 5DT with control of value in each DT.

Other examples of potentiometers with detents:
20DT

Number of standard detents (evenly distributed) already available.	1 (initial or final), 2 DT (initial and final),
Maximum number of detents for feeling only	$3,4,5,6,7,8,10,20$.
Maximum number of detents when the voltage value in each detent is controlled and non-overlapping.	20

Our patented design with two wipers has improved the performance of these potentiometers, giving them more stable electrical parameters, improved reliability and Contact Resistance Variation (CRV) as well as narrower tolerances for detent positioning.

For potentiometers with detents, mechanical life is also 1.000 cycles if no additional cycles are mentioned. Please, indicate the number of cycles needed with LV (number of cycles), for example: LV07, for 7.000 cycles.

By default, terminals are always straight, as shown on the "models" section. ACP can provide crimped terminals (with snap in, "SNP" or "SNJ") to better hold the component to the PCB during the soldering operation.

SNP

SNJ

Also, there is an option of having shorter terminal tips:

Standard Terminal

Shorter terminal, for H5 TP25
Shorter terminal, TPXX (under request)

Possibilities
for insertion
of accessories
Accessories can be mounted on potentiometers through either the front side (WT) or the collector side (WTI). For the specific angular position of shafts with planes, a drawing with the exact position is requested.

WT Front side

WTI Collector side
WT Front side
WTI Collector side

Shafts

Shafts are available in different colors (color chart in "how to order" section) and with self-extinguishable property, according to UL 94 V-0, under request. ACP can study special shaft designs.
Shafts can be sold separately or delivered already mounted on the potentiometer at ACP.
Unless otherwise stated, the arrow in the shafts is in line with the wiper and it points to 50% when assembled with M rotors.
When a shaft is mounted on a potentiometer, the distance from the top of the potentiometer to the top of the shaft is marked with " L " in the table below, as shown in the drawings:

Shaft $\quad 90719067907290749054900490059064905590709076905390189039904890569009905990639010905190069019907390209047$

| L Dimension 3.5 | 5.5 | 6.5 | 9.3 | 9.5 | 10 | 10 | 10 | 10.8 | 11.9 | 12 | 12.1 | 12.8 | 12.8 | 12.8 | 12.8 | 14.5 | 14.5 | 14.5 | 15 | 15 | 19.7 | 19.9 | 25.5 | 25.9 | 29.8 |
| :--- |

The arrow is in line with the wiper when potentiometer has rotor J
(with M rotor, there is a 30° difference).

9074 (for 2 ganged potentiometers)

9076 (for 2 ganged potentiometers)

Thumbwheel

Thumbwheels are available in different colors (color chart in "how to order" section) and with self-extinguishable property according to UL 94 V-0, under request.
Thumbwheels can be mounted on the potentiometers at ACP or sold separately. ACP can study special thumbwheel designs.

Bulk packaging:

Potentiometer model	With shaft or thumbwheel inserted?	Pieces per small box ($150 \times 100 \times 70$)	Pieces per bigger box ($250 \times 150 \times 70$, CG on description)
H2,5 - H3,8-HS3,8-H5 HSMD - V7,5-V10 VK10 - VR10 - VSMD	None, only potentiometers.	500	1.500
	9002	250	1.000
	9004, 9005, 9006, 9009, 9010, 9018, 9039, 9041, 9047, 9048, 9051, 9053, 9054, 9055, 9056, 9059, 9060, 9061, 9063, 9064, 9067, 9070.	200	1.000 in general
	9071, 9072	400	1.250
KAV - MAV - MTV	None, only potentiometers.	400	1.250
MTX2	9048, 9074, 9076	150	To be determined.
MTX4	9039, 9051	75	To be determined.
MTX6	9018	50	To be determined.
MTX8	9056	40	To be determined.

Tape \& Reel packaging:	With thumbwheel inserted?	13" Reel (Standard), with 24 mm width tape	15" Reel, with 24 mm width tape
VSMD	None, only potentiometers.	900 pcs per reel, 12 mm step between cavities.	1.250 pcs per reel, 12 mm step between cavities.
	9002	700 pcs per reel, 12 mm step between cavities.	To be determined.
VSMD...CY	None, only potentiometers.	750 pcs per reel, 12 mm step between cavities	1000 pcs per reel, 12 mm step between cavities
	9002	To be determined	To be determined
HSMD		350 pcs per reel, 16 mm step between cavities	475 pcs per reel, 16 mm step between cavities
H2,5...PIP TP25 H5...PIP TP25 HS3,8... PIP	None, only potentiometers or 9002	250	350
V7,5...PIP V10...PIP V10...PIP TP25 VR10...PIP		250	400

The 13 " reel is the standard. For the 15 " reel, T\&R15 is added to the description.

VSMD-T\&R ...CY

VSMD-T\&R...CY WT-9002

V7,5-T\&R...PIP
V7,5-T\&R... PIP WT-9002

V10-T\&R... PIP
V10-T\&R...PIP WT-9002

V10-T\&R...PIP TP25
V10-T\&R...PIP TP25 WT-9002

H2,5-T\&R...PIP TP25

These are standard features; other specifications and out of range values can be studied on request.

	CA9 Through-hole	CA9 SMD	CE9 Through-hole and SMD
Range of resistance values* Lin (A) Log (B) Antilog (C)	$\begin{aligned} & 100 \Omega \leq R n \leq 5 \mathrm{M} \Omega \\ & 1 \mathrm{~K} \Omega \leq R n \leq 2 \mathrm{M} 2 \Omega \end{aligned}$	$\begin{aligned} & 100 \Omega \leq R n \leq 1 \mathrm{M} \Omega \\ & 1 \mathrm{~K} \Omega \leq R n \leq 1 \mathrm{M} \Omega \end{aligned}$	$\begin{gathered} 100 \Omega \leq R n \leq 5 \mathrm{M} \Omega \\ 1 \mathrm{~K} \Omega \leq R n \leq 2 \mathrm{M} 2 \Omega \end{gathered}$
$\begin{array}{ll} \hline \text { Tolerance }^{\star} & \mathrm{Rn}<100 \Omega: \\ 100 \Omega \leq R n \leq 100 \mathrm{~K} \Omega \\ 100 \mathrm{~K}<\mathrm{Rn} \leq 1 \mathrm{M} \Omega: \\ 1 \mathrm{M} \Omega<R n \leq 5 \mathrm{M} \Omega: \\ R n>5 M \Omega: \end{array}$	$\begin{gathered} +50 \%,-30 \% \text { (out of range) } \\ \pm 20 \% \\ \pm 20 \% \\ \pm 30 \% \\ +50 \%,-30 \% \text { (out of range) } \end{gathered}$	$\begin{aligned} & \pm 30 \% \\ & \pm 40 \% \\ & \pm 50 \% \end{aligned}$	$\begin{aligned} & \pm 20 \% \\ & \pm 20 \% \\ & \pm 30 \% \end{aligned}$
Variation laws	Lin (A), Log (B), Antilog (C). Other tapers available on request		
Residual resistance	Lin (A), Log (B), Antilog	Minimum value 2Ω	$\leq 2 \Omega$
CRV - Contact Resistance Variation (dynamic)	Lin (A) Electrical Angle $220^{\circ} \pm 20^{\circ} \leq 3 \%$ Rn. Other tapers, please inquire		
CRV - Contact Resistance Variation (static)	Lin (A) Electrical Angle $220^{\circ} \pm 20^{\circ} \leq 5 \%$ Rn. Other tapers, please inquire		
Maximum power dissipation** Lin (A) Log (B), Antilog (C)	$\begin{aligned} & \hline \text { at } 50^{\circ} \mathrm{C} \\ & 0.15 \mathrm{~W} \\ & 0.10 \mathrm{~W} \end{aligned}$		at $70^{\circ} \mathrm{C}$. 0.5 W 0.20W
Maximum voltage Lin (A) Log (B), Antilog (C)	$\begin{aligned} & \text { 200VDC } \\ & \text { 150VDC } \end{aligned}$		200VDC
Operating temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+85^{\circ} \mathrm{C}\right.$ on request)		$-40^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}\left(+125^{\circ} \mathrm{C}\right.$ on request)
$\begin{aligned} & \hline \text { Temperature coefficient } \\ & 100 \Omega \leq R \mathrm{Rn} \leq 10 \mathrm{~K} \Omega \\ & 10 \mathrm{~K} \Omega<\mathrm{Rn} \leq 5 \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & +200 /-300 \mathrm{ppm} \\ & +200 /-500 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & +200 /-500 \mathrm{ppm} \\ & +200 /-1000 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \pm 100 \mathrm{ppm} \\ & \pm 100 \mathrm{ppm} \end{aligned}$

* Out of range ohm values and tolerances are available on request, please, inquire.
** Dissipation of special tapers will vary, please, inquire.

Mechanical
Specifications
CA9 Through-hole
CA9 SMD
CE9 Through-hole and SMD

Resistive element	Carbon technology	Carbon technology	Cermet
Angle of rotation (mechanical)		$240^{\circ} \pm 5^{\circ}$	
Angle of rotation (electrical)	$220^{\circ} \pm 20^{\circ}$		
Wiper standard delivery position	$50 \% \pm 15^{\circ}$		
Max. stop torque	5 Ncm		
Max. push/pull on rotor	40 N		
Wiper torque*	Potentiometers with detents: $<2.5 \mathrm{Ncm}$		
Mechanical life	1.000 cycles (many more available on request, please, inquire)		

* Stronger or softer torque feeling is available on request.

The following typical test results are given at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $50 \% \pm 25 \% \mathrm{RH}$.
CA9 Through-hole and SMD
CE9 Through-hole and SMD

	Test conditions	Typical variation of nominal resistance	Test conditions	Typical variation of nominal resistance
Damp heat	500 h. at $40^{\circ} \mathrm{C}$ and $95 \% \mathrm{RH}$	$+5 \%,-2 \%$	500 h. at $40^{\circ} \mathrm{C}$ and $95 \% \mathrm{RH}$	$\pm 2 \%$
Thermal cycles	16 h at $85^{\circ} \mathrm{C}$, plus 2 h at $-25^{\circ} \mathrm{C}$	$\pm 2.5 \%$	16 h at $90^{\circ} \mathrm{C}$, plus 2 h at $-40^{\circ} \mathrm{C}$	$\pm 2 \%$
Load life	1.000 h. at $50^{\circ} \mathrm{C}$	$+0 \% ;-6 \%$	1.000 h. at $70^{\circ} \mathrm{C}$	$\pm 2 \%$
Mechanical life	1.000 cycles at $10 \mathrm{c} . \mathrm{p} . \mathrm{m}$. and at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	$\pm 3 \%$	1.000 cycles at $10 \mathrm{c} . \mathrm{p} . \mathrm{m}$. and at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	$\pm 3 \%$
Storage (3 years)	3 years at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	$\pm 3 \%$	3 years at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	

Power derating curve:

For temperatures out of range

The normal operation temperature for a carbon ACP potentiometer is $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. When the temperature goes up to $85^{\circ} \mathrm{C}$, the following variations should be observed:

Representation of the typical variation of nominal resistance (with 95\% confidence) throughout the ohm value range:

	CA9 Through-hole and SMD								CE9 Through-hole and SMD										
Damp heat			1K				$=\mathrm{Vari}$				470	$1 \mathrm{~K}$			47K tance	100k		Variatio OK	
Temperature Coefficient			1K	$4 \mathrm{~K}^{2}$ Re			$=\text { vari }$ K 470K				470	$1 \mathrm{k}$				$100 \mathrm{~K}$	$=$ 470K	Variatio ok	
Load life									uо!ңセuূe^ әnןе^ \%		470	$1 \mathrm{~K}$				100K	$=v_{0}$ K 470k	Variatio 0k	
Mechanical life			9	$4 K 7$ Re			$=\operatorname{larin}$ K 470K				470	$1 \mathrm{~K}$	${ }^{4 \mathrm{K7} 7}$	10K Resist		$100 \mathrm{k}$	$=\mathrm{va}$ K 470k	Variatio \qquad OK	 1 M $4 \mathrm{M}_{7}$

