Panasonic ideas for life

SUPER MINIATURE TWIN TYPE AUTOMOTIVE RELAY

FEATURES

- Smallest in its class, it is extremely compact at approximately $2 / 3$ the size of previous products.
It takes up only about two thirds the space and volume of our previous twin type CT compact relay. It is perfect for making compact relay units.
- Compact and high-capacity 25 A load switching.
High capacity control is possible while being compact and capable of motor lock load switching at 25 A, 14 V DC.

Sealed type

Sealed type makes automatic cleaning possible.

TYPICAL APPLICATIONS

- Powered windows
- Automatic door locks
- Electrically powered mirrors
- Powered sun roofs
- Powered seats
- Lift gates
- Slide door closers, etc. (for DC motor forward/reverse control circuits)

SPECIFICATIONS

Contact

Arrangement			1 Form C×2
Contact material			Silver alloy
Initial contact resistance (By voltage drop 6 V DC 1 A)			Max. 100m Ω
Rating	Nominal switching capacity		$\begin{aligned} & \text { N.O.: } 20 \text { A } 14 \text { V DC } \\ & \text { N.C.: } 10 \text { A } 14 \text { V DC } \end{aligned}$
	Max. carrying current		30 A for 2 minutes, 20 A for 1 hour $\left(14 \mathrm{~V}\right.$, at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$
	Min. switching capacity**1		1A 12V DC
Expected life (min. operation)	Mechanical (at 120 cpm)		Min. $10{ }^{7}$
	Electrical	Resistive load*1	Min. 10^{5}
		Motor load*2	N.O.; 5A 14V DC, Inrush 25A (motor load): Min. 2×10^{5}
			N.O.; 25A 14V DC (motor lock): Min. 10^{5}
			N.C.; 20A (brake) 14V DC: Min. 2×10^{5}
Coil			
Nominal operating power			$\begin{aligned} & \text { 640mW (ACJ2212) } \\ & \text { 800mW (ACJ2112) } \end{aligned}$

Remarks

${ }^{* * 1}$ This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*1 At nominal switching capacity, operating frequency: 1s ON, 9s OFF
*2 At operating frequency: 0.5 s ON, 9.5 s OFF
*3 Measurement at same location as "Initial breakdown voltage" section
*4 Detection current: 10mA
*5 Excluding contact bounce time
*6 Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*7 Half-wave pulse of sine wave: 6 ms
*8 Detection time: $10 \mu \mathrm{~s}$
${ }^{* 9}$ Refer to 6 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (p. 19, Relay Technical Information).

Characteristics

Max. operating speed (at nominal switching capacity)		6 cpm
Initial insulation resistance *3		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage *4	Between open contacts	500 Vrms for 1 min.
	Between contacts and coil	500 Vrms for 1 min.
Operate time *5 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10ms (Initial)
Release time (without diode)*5 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10ms (Initial)
Shock resistance	Functional *6	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
	Destructive *7	Min. 1,000 m/s² 2100 G$\}$
Vibration resistance	Functional *8	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz}, \\ \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\} \end{gathered}$
	Destructive	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 500 \mathrm{~Hz}, \\ \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\} \end{gathered}$
Conditions for operation, transport and storage *9 (Not freezing and condensing at low temperature)	Ambient temp	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{gathered}$
	Humidity	5\% R.H. to 85\% R.H.
Mass		Approx. 6.5g .23oz

CJ (ACJ)

ORDERING INFORMATION

Contact arrangement	Nominal operating power	Coil voltage (V DC)
2: 1 Form $\mathrm{C} \times 2$	$\begin{aligned} & \text { 2: } 640 \mathrm{~mW} \\ & \text { 1: } 800 \mathrm{~mW} \end{aligned}$	12: 12

Standard packing: Carton(tube package) 40 pcs; Case 1,000 pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$).

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominal operating current, mA	Nominal operating power, mW	Usable voltage range, V DC
1 Form C $\times 2$	ACJ2212	12	Max. 7.2	Min. 1.0	$225 \pm 10 \%$	$53.3 \pm 10 \%$	640	10 to 16
	ACJ2112	12	Max. 6.5	Min. 0.8	180 $\pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16

DIMENSIONS

PC board pattern (Bottom view)

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

2-(1). Electrical life test (Motor free)
Sample: ACJ2212, 3pcs; Load: Inrush current: 25A/
Steady current: 5A, Power window motor actual load (free condition); Tested voltage: 14 V DC; Switching frequency: (ON:OFF = $0.5 \mathrm{~s}: 9.5 \mathrm{~s})$; Switching cycle: 2×10^{5}; Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 25A, Steady current: 6A,
Brake current: 13A
10 A

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

Change of contact resistance

CJ (ACJ)

2-(2). Electrical life test (Motor lock)
Sample: ACJ2212, 3pcs; Load: Steady current: 25A,
Power window motor actual load (lock condition);
Tested voltage: 14 V DC; Switching frequency:
(ON:OFF = 0.5s:9.5s); Switching cycle: 10^{5};
Ambient temperature: Room temperature
Circuit

Load current waveform
Current value: 25A

Change of pick-up and drop-out voltage

Change of contact resistance

For Cautions for Use, see Relay Technical Information.

