Panasonic ideas for life

Twin type (8 terminals)

SUPER MINIATURE TWIN TYPE AUTOMOTIVE RELAY

FEATURES

- Small \& slim size

Twin type: $17.4(\mathrm{~L}) \times 14.0(\mathrm{~W}) \times 13.5(\mathrm{H}) \mathrm{mm}$ $.685(\mathrm{~L}) \times .551(\mathrm{~W}) \times .531(\mathrm{H})$ inch
Slim 1c type: 17.4(L) $\times 7.2(\mathrm{~W}) \times 13.5(\mathrm{H}) \mathrm{mm}$
$.685(\mathrm{~L}) \times .283(\mathrm{~W}) \times .531(\mathrm{H})$ inch

- Twin (1 Form C $\times 2$)

Forward/reverse motor control is possible with a single relay.

- Simple footprint enables ease of PC board layout
$※ 10$ terminals layout

$\circ=8$ terminals

TYPICAL APPLICATIONS

- Power windows
- Auto door lock
- Power sunroof
- Electrically powered mirrors
- Powered seats
- Lift gates
- Slide door closers, etc.
(for DC motor forward/reverse control circuits)

SPECIFICATIONS

Arrangement			1 Form $\mathrm{C} \times 2$, 1 Form C
Contact material			AgSnO_{2} type
Initial contact resistance (By voltage drop 6 V DC 1 A)			Max. 100m Ω
Initial contact voltage drop			Max. 0.2 V (at 10 A)
Rating	Nominal switching capacity		$\begin{aligned} & \text { N.O.: } 20 \text { A } 14 \text { V DC } \\ & \text { N.C.: } 10 \text { A } 14 \text { V DC } \end{aligned}$
	Max. carr	ing current	35 A for 2 minutes, 25 A for 1 hour (14 V , at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 30 A for 2 minutes, 20 A for 1 hour $\left(14 \mathrm{~V}\right.$, at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Min. switch	ing capacity\#1	1 A 12 V DC
Expected life (min. operation)	Mechani	(at 120 cpm)	Min. 10^{7}
	Electrical	Resistive load	Min. $10^{5 * 1}$
		Motor load	Min. $2 \times 10^{5 * 2}$ (free)
		Motor load	Min. 105*3 (lock)
Coil			
Nominal operating power			800 mW
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.			
Remarks			
$*_{1}$ At nominal switching capacity, operating frequency: 1 s ON, 9s OFF			
*2 N.O.: at 5 A (steady), 25 A (inrush)/N.C.: at 20 A (brake) 14 V DC , operating frequency: 0.5 s ON, 9.5 s OFF			
*3 At 25A 14 V DC (Motor lock), operating frequency: 0.5 s ON, 9.5s OFF			
*4 Measurement at same location as "Initial breakdown voltage" section			
*5 Detection current: 10 mA			
*6 Excluding contact bounce time			
*7 Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$			
*8 Half-wave pulse of sine wave: 6 ms			

Characteristics

Max. operating speed (at nominal switching capacity)			6 cpm
Initial insulation resistance*4			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*5	Between contacts		500 Vrms for 1 min.
	Between and coil	tacts	500 Vrms for 1 min.
Operate time* (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Release time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Shock resistance ${ }^{\text {F }}$ F		ctional*7	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ \{10G\}
		tructive*8	Min. 1,000 m/s² $\left.{ }^{\text {a }} 100 \mathrm{G}\right\}$
Vibration resistance		ctional*9	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz}, \\ \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\} \end{gathered}$
		tructive*10	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 500 \mathrm{~Hz}, \\ \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\} \\ \hline \end{gathered}$
Conditions for operation, transport and storage*11 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \\ & \hline \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 8.0 g .280 z (Twin type) Approx. 4.0 g . 14 oz (Slim 1c type)

*9 Detection time: $10 \mu \mathrm{~s}$
${ }^{* 10}$ Time of vibration for each direction; X, Y, direction: 2 hours
Z direction: 4 hours
${ }^{* 11}$ Refer to 6 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (p. 19, Relay Technical Information)

CT (ACT)

ORDERING INFORMATION

Standard packing; 1 Form C: Carton(tube package) 30pcs. Case 1,500pcs. 1 Form C $\times 2$: Carton(tube package) 30pcs. Case 900pcs.

TYPES AND COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominal operating current, mA	Nominal operating power, mW	Usable voltage range, V DC
1c	ACT112	12	Max. 7.2	Min. 1.0	180 $\pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16
$\begin{gathered} 1 \mathrm{c} \times 2 \\ \text { (8 terminals type) } \end{gathered}$	ACT212	12	Max. 7.2	Min. 1.0	180 $\pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16
$1 \mathrm{c} \times 2$ (10 terminals type)	ACT512	12	Max. 7.2	Min. 1.0	180 $\pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS

1. Twin type (8 terminals)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. intervals between terminals is measured at A surface level.

2. Twin type (10 terminals)

[^0] Intervals between terminals is measured at A surface level.

mm inch

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature
Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A

3. Ambient temperature and operating voltage range

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A

4. Distribution of pick-up and drop-out voltage Sample: ACT212, 40pcs.

2. Max. switching capability (Resistive load)

5. Distribution of operate and release time Sample: ACT212, 40pcs

* Without diode

CT (ACT)

6-(1). Electrical life test (Motor free)
Sample: ACT212, 3pcs.
Load: 5A steady, Inrush 25A, 14 V DC
Brake current: 13A 14V DC,
Power window motor actual load (free condition)
Operating frequency: (ON : OFF $=0.5 \mathrm{~s}: 9.5 \mathrm{~s})$
Ambient temperature: Room temperature
Circuit:

Load current waveform
Inrush current: 25A, Steady current: 6A
Brake current: 13A
$10 A^{4}$.
100 ms

6-(2). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 25A 14V DC
Switching frequency: (ON : OFF = $0.5 \mathrm{~s}: 9.5 \mathrm{~s}$)
Ambient temperature: Room temperature

Circuit:

Load current waveform

6-(3). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 20A 14 V DC,
door lock motor actual load (Lock condition)
Switching frequency: (ON : OFF = 0.3s : 19.7s)
Ambient temperature: Room temperature
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform

For Cautions for Use, see Relay Technical Information.

[^0]: * Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering

