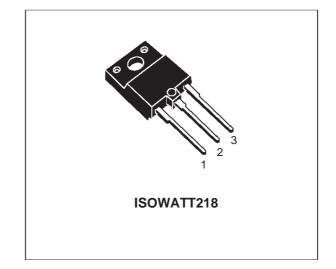
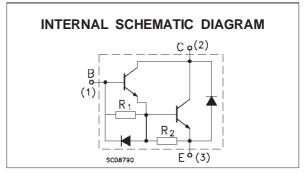


BU808DFI

HIGH VOLTAGE FAST-SWITCHING NPN POWER DARLINGTON


- STMicroelectronics PREFERRED SALESTYPE
- NPN MONOLITHIC DARLINGTON WITH INTEGRATED FREE-WHEELING DIODE
- HIGH VOLTAGE CAPABILITY (> 1400 V)
- HIGH DC CURRENT GAIN (TYP. 150)
- U.L. RECOGNISED ISOWATT218 PACKAGE (U.L. FILE # E81734 (N))
- LOW BASE-DRIVE REQUIREMENTS
- DEDICATED APPLICATION NOTE AN1184


APPLICATIONS

 COST EFFECTIVE SOLUTION FOR HORIZONTAL DEFLECTION IN LOW END TV UP TO 21 INCHES.

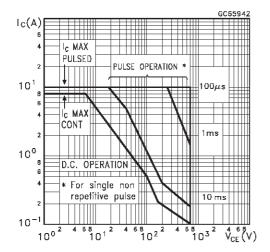
DESCRIPTION

The BU808DFI is a NPN transistor in monolithic Darlington configuration. It is manufactured using Multiepitaxial Mesa technology for cost-effective high performance.

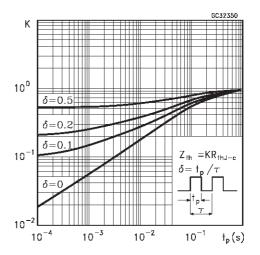
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{СВО}	Collector-Base Voltage ($I_E = 0$)	1400	V	
Vceo	Collector-Emitter Voltage $(I_B = 0)$	700	V	
V _{EBO}	Emitter-Base Voltage $(I_C = 0)$	5	V	
Ι _C	Collector Current	8	A	
I _{CM}	Collector Peak Current (t _p < 5 ms)	10	A	
IB	Base Current	3	A	
I _{BM}	Base Peak Current (t _p < 5 ms)	6		
Ptot	Total Dissipation at T _c = 25 °C	52	W	
T _{stg}	Storage Temperature	-65 to 150	°C	
Tj	Max. Operating Junction Temperature	150	°C	

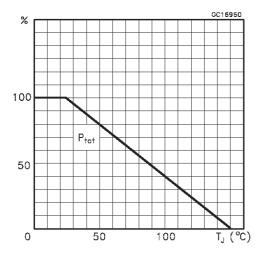
THERMAL DATA

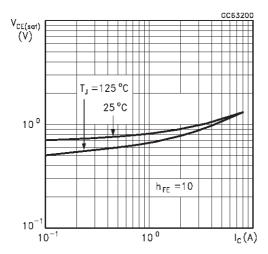

R _{thj-case} Thermal Resistance Junction-case	Max	2.4	°C/W
--	-----	-----	------

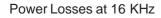
ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \, {}^{\circ}C$ unless otherwise specified)

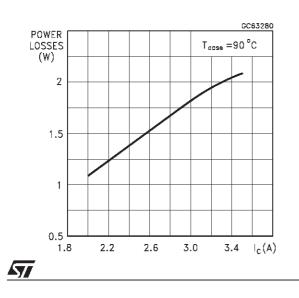

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ICES	Collector Cut-off Current ($V_{BE} = 0$)	V _{CE} = 1400 V			400	μA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	$V_{EB} = 5 V$			100	mA
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{\rm C} = 5 \text{ A}$ $I_{\rm B} = 0.5 \text{ A}$			1.6	V
$V_{\text{BE}(\text{sat})}*$	Base-Emitter Saturation Voltage	$I_{\rm C} = 5 \text{ A}$ $I_{\rm B} = 0.5 \text{ A}$			2.1	V
h _{FE} *	DC Current Gain		60 20		230	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time				3 0.8	μs μs
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time			2 0.8		μs μs
VF	Diode Forward Voltage	I _F = 5 A			3	V

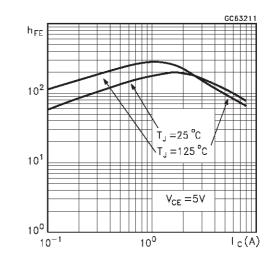
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

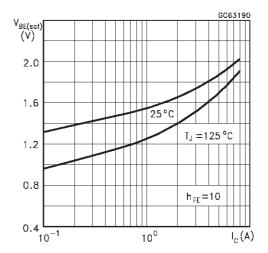

Safe Operating Area

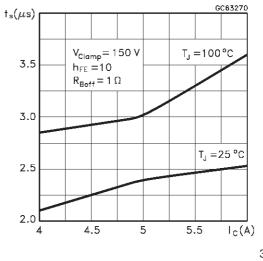

Thermal Impedance

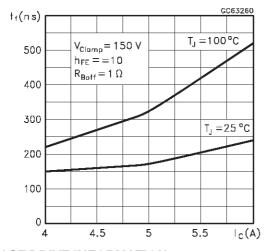



Derating Curve


Collector Emitter Saturation Voltage

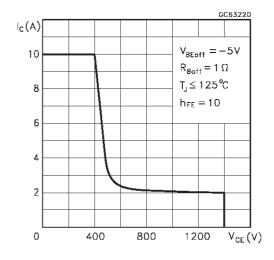



DC Current Gain



Base Emitter Saturation Voltage

Switching Time Inductive Load at 16KHz


Switching Time Inductive Load at 16KHZ

BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current I_{B1} has to be provided for the lowest gain h_{FE} at 100 °C (line scan phase). On the other hand, negative base current I_{B2} must be provided to turn off the power transistor (retrace phase).

Most of the dissipation, in the deflection application, occurs at switch-off. Therefore it is essential to determine the value of I_{B2} which minimizes power losses, fall time t_f and, consequently, T_j . A new set of curves have been defined to give total power losses, t_s and t_f as a function of I_{B2} at both 16 KHz scanning frequencies for choosing the optimum negative

Reverse Biased SOA

drive. The test circuit is illustrated in figure 1.

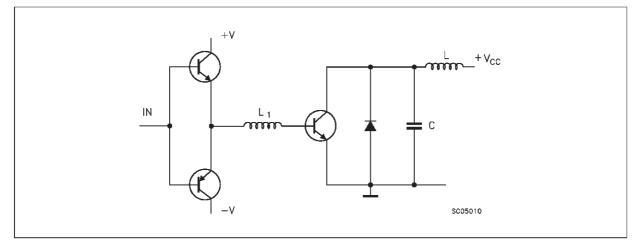
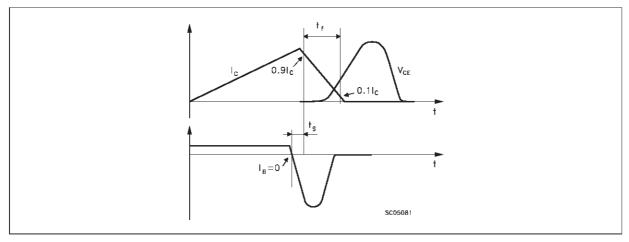
Inductance L_1 serves to control the slope of the negative base current I_{B2} to recombine the excess carrier in the collector when base current is still present, this would avoid any tailing phenomenon in the collector current.

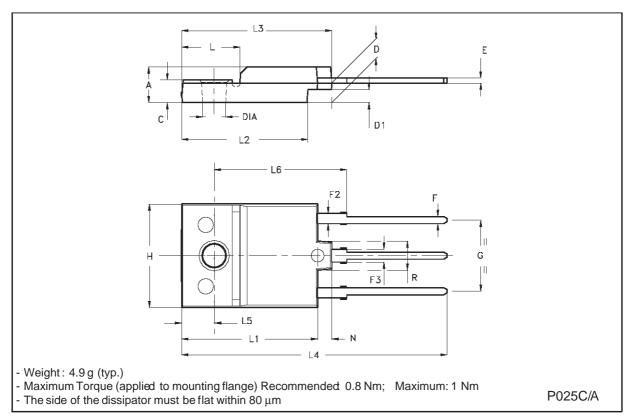
The values of L and C are calculated from the following equations:

$$\frac{1}{2} L (I_C)^2 = \frac{1}{2} C (V_{CEfly})^2 \qquad \omega = 2 \pi f = \frac{1}{\sqrt{LC}}$$

Where I_C = operating collector current, V_{CEfly} = flyback voltage, f= frequency of oscillation during retrace.

Figure 1: Inductive Load Switching Test Circuits.


Figure 2: Switching Waveforms in a Deflection Circuit

BU808DFI

ISOWATT218 MECHANICAL DATA	
-----------------------------------	--

DIM	mm			inch		
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	5.35		5.65	0.211		0.222
С	3.30		3.80	0.130		0.150
D	2.90		3.10	0.114		0.122
D1	1.88		2.08	0.074		0.082
E	0.75		0.95	0.030		0.037
F	1.05		1.25	0.041		0.049
F2	1.50		1.70	0.059		0.067
F3	1.90		2.10	0.075		0.083
G	10.80		11.20	0.425		0.441
Н	15.80		16.20	0.622		0.638
L		9			0.354	
L1	20.80		21.20	0.819		0.835
L2	19.10		19.90	0.752		0.783
L3	22.80		23.60	0.898		0.929
L4	40.50		42.50	1.594		1.673
L5	4.85		5.25	0.191		0.207
L6	20.25		20.75	0.797		0.817
Ν	2.1		2.3	0.083		0.091
R		4.6			0.181	
DIA	3.5		3.7	0.138		0.146

