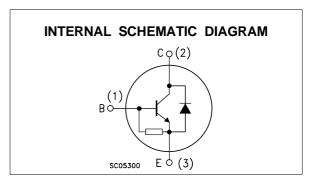


HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING
- NPN TRANSISTOR WITH INTEGRATED FREE WHEELING DIODE.

APPLICATIONS


 HORIZONTAL DEFLECTION FOR COLOUR TVS

DESCRIPTION

The BUH315D is manufactured using Multiepitaxial Mesa technology for cost-effective high performance and uses a Hollow Emitter structure to enhance switching speeds.

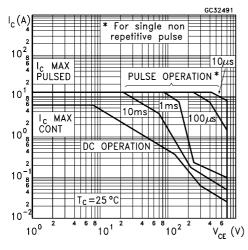
The BUH series is designed for use in horizontal deflection circuits in televisions and monitors.

ABSOLUTE MAXIMUM RATINGS

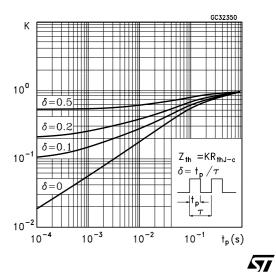
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	1500	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	700	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	10	V
Ic	Collector Current	6	А
I _{CM}	Collector Peak Current (t _p < 5 ms)	12	А
I_{B}	Base Current	3	А
I_{BM}	Base Peak Current (tp < 5 ms)	5	А
P_{tot}	Total Dissipation at T _c = 25 °C	44	W
V _{isol}	Insulation Withstand Voltage (RMS) from All Three Leads to Exernal Heatsink	2500	V
T_{stg}	Storage Temperature	-65 to 150	°C

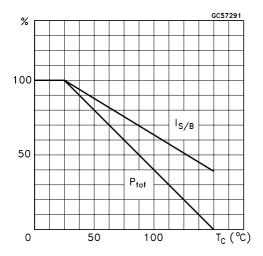
July 2002 1/7

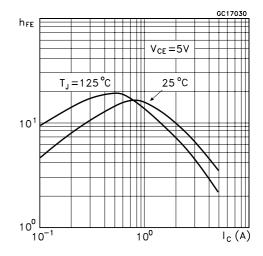
R _{thi-case} Thermal Resistance Junction-case	Max	2.8	°C/W
--	-----	-----	------


ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

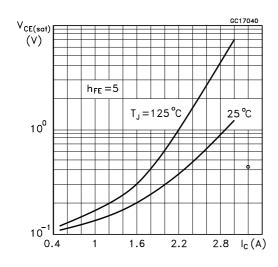
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1500 V			200	μΑ
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V	110		300	mA
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage	$I_C = 3 A$ $I_B = 1 A$			1.5	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 3 A I _B = 1 A			1.5	V
h _{FE} *	DC Current Gain	$I_{C} = 3 \text{ A}$ $V_{CE} = 5 \text{ V}$ $I_{C} = 3 \text{ A}$ $V_{CE} = 5 \text{ V}$ $T_{j} = 100 ^{\circ}\text{C}$	4 2.5		9	
t _s t _f	RESISTIVE LOAD Storage Time Fall Time	V _{CC} = 400 V		1.8 200	2.7 300	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{llllllllllllllllllllllllllllllllllll$		2.5 400	6 500	μs ns
V _F	Diode Forward Voltage	I _F = 3 A			2.5	V

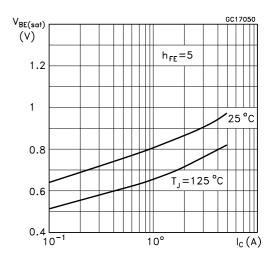

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %


Safe Operating Area

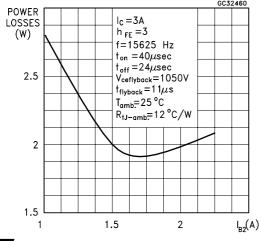

2/7

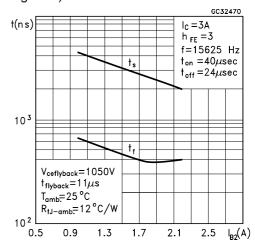
Thermal Impedance





Collector Emitter Saturation Voltage


Base Emitter Saturation Voltage





Power Losses at 16 KHz

Switching Time Inductive Load at 16KHz (see figure 2)

BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current I_{B1} has to be provided for the lowest gain h_{FE} at 100 $^{\circ}$ C (line scan phase). On the other hand, negative base current I_{B2} must be provided to turn off the power transistor (retrace phase).

Most of the dissipation, in the deflection application, occurs at switch-off. Therefore it is essential to determine the value of I_{B2} which minimizes power losses, fall time t_f and, consequently, T_j . A new set of curves have been defined to give total power losses, t_s and t_f as a function of I_{B2} at 16 KHz scanning frequencies the optimum negative drive. The test circuit is illustrated in fig. 1.

Inductance L_1 serves to control the slope of the negative base current I_{B2} to recombine the excess carrier in the collector when base current is still present, this would avoid any tailing phenomenon in the collector current.

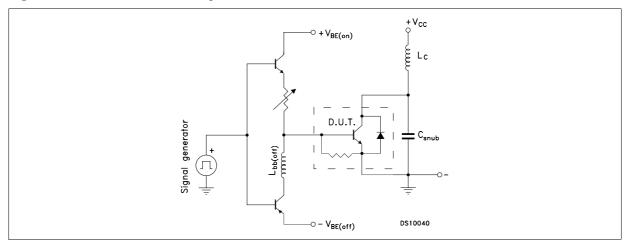
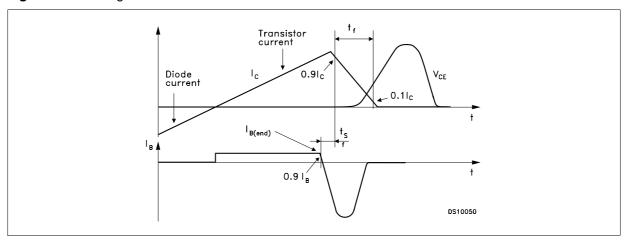
The values of L and C are calculated from the following equations:

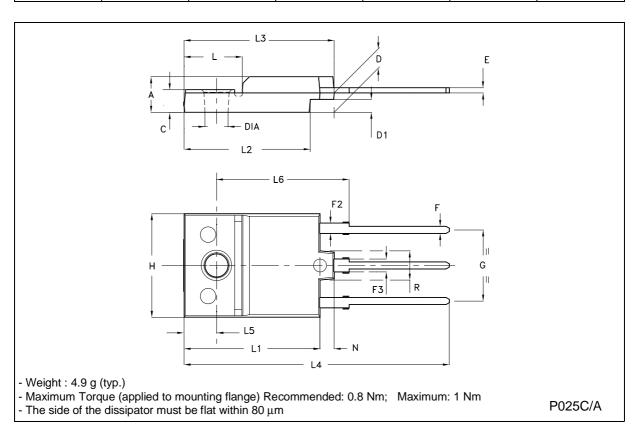
$$\frac{1}{2}L(I_C)^2 = \frac{1}{2}C(V_{CEfly})^2$$
$$\omega = 2\pi f = \frac{1}{\sqrt{LC}}$$

Where I_C = operating collector current, V_{CEfly} = flyback voltage, f= frequency of oscillation during retrace.

4/7

Figure 1: Inductive Load Switching Test Circuits.


Figure 2: Switching Waveforms in a Deflection Circuit

5/7

ISOWATT218 MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	5.35		5.65	0.211		0.222
С	3.30		3.80	0.130		0.150
D	2.90		3.10	0.114		0.122
D1	1.88		2.08	0.074		0.082
Е	0.75		0.95	0.030		0.037
F	1.05		1.25	0.041		0.049
F2	1.50		1.70	0.059		0.067
F3	1.90		2.10	0.075		0.083
G	10.80		11.20	0.425		0.441
Н	15.80		16.20	0.622		0.638
L		9			0.354	
L1	20.80		21.20	0.819		0.835
L2	19.10		19.90	0.752		0.783
L3	22.80		23.60	0.898		0.929
L4	40.50		42.50	1.594		1.673
L5	4.85		5.25	0.191		0.207
L6	20.25		20.75	0.797		0.817
N	2.1		2.3	0.083		0.091
R		4.6			0.181	
DIA	3.5		3.7	0.138		0.146

6/7