
FEATURES

- Exact equivalent in most cases for SE/NE555
- Low Supply Current
- High speed operation 500KHz guaranteed
- Wide operation supply voltage range 2V to 18V
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- High output source/sink driver can drive TTL/CMOS

APPLICATION

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Missing Pulse detector

ORDERING INFORMATION

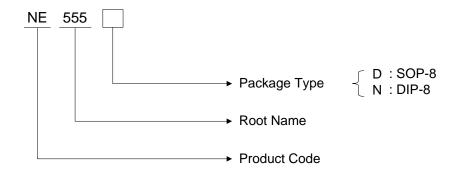
Device	Package
NE555D	SOP-8
NE555N	DIP-8

DESCRIPTION

The NE555 is CMOS RC timers providing significantly improved performance over the standard SE/NE555 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation. Specifically, the NE555 is stable controller capable of producing accurate time delays of frequencies.

ABSOLUTE MAXIMUM RATINGS (Note 1)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Supply Voltage	V _{CC}	0	18	V
Output Current	Ιο	-	100	mA
Input Voltage	V _{TH} , V _{TRIG} , V _{RST}	-0.3	V _{CC} +0.3	V
Storage Temperature Range	T _{STG}	-65	150	°C
Operating Junction Temperature Range	T _{OPR}	-20	85	°C

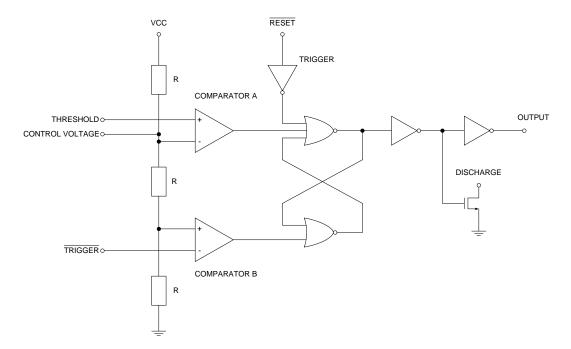

RECOMMENDED OPERATING RATINGS (Note 2)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Supply Voltage	V _{cc}	2	18	V
Operating Junction Temperature Range	T _{OPR}	-20	70	°C

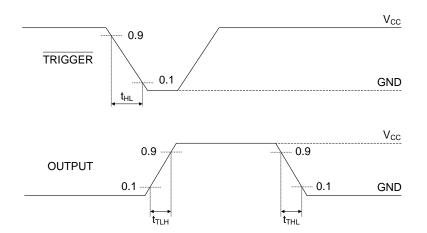
NE555

ORDERING INFORMATION

Order No.	Package	Description	Supplied As	Status
NE555D	SOP-8	General Purpose Timer	Reel	Active
NE555N	DIP-8	General Purpose Timer	Tube	Active


PIN CONFIGURATION

SOP-8	DIP-8
(Top View)	(Top View)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ 4 \\ - \\ 5 \\ \end{array} $ $ \begin{array}{c} 8 \\ 7 \\ - \\ 6 \\ - \\ 5 \\ \end{array} $


PIN DESCRIPTION

Pin No.	Name	Function
1	GND	Supply ground
2	TRIGGER	Start timer input; (Active LOW)
3	OUTPUT	Timer logic level output
4	RESET	Timer inhibit input; (Active LOW)
5	CONTROL VOLTAGE	Timing capacitor upper voltage sense input
6	THRESHOLD	Timing capacitor lower voltage sense input
7	DISCHARGE	Timing capacitor discharge output
8	VCC	Supply voltage

FUNCTIONAL DIAGRAM

SWITCHING WAVEFORMS

TRUTH TABLE

THRESHOLD	TRIGGER	RESET	OUTPUT	DISCHARGE
Х	Х	L	L	ON
> 2/3V _{CC}	> 1/3V _{CC}	Н	L	ON
< 2/3V _{CC}	> 1/3V _{CC}	Н	STABLE	STABLE
Х	< 1/3V _{CC}	Н	Н	OFF

ELECTRICAL CHARACTERISTICS (Note 3)

Limits in standard typeface are for $T_J = 25^{\circ}$ C, and limits in **boldface type** apply over the **full operating temperature range**. $V_{CC}=5V$, unless otherwise specified.

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
DC ELECTRICAL CHARACTE	RISTICS		•	1		1	
Threshold Voltage		$V_{CC} = 5V$	3.2		3.5	- V	
	V _{TH}	V _{CC} = 15V	9.6		10.5		
T : N / b		$V_{CC} = 5V$	1.55		1.8	v	
Trigger Voltage	V _{TRIG}	V _{CC} = 15V	4.6		5.4		
Reset Voltage	V _{RST}	V _{CC} = 2V, 15V, 18V	0.4		1.0	V	
		$V_{CC} = 5V$	3.2		3.5		
Control Voltage	V _{cv}	V _{cc} = 15V	9.6		10.5	V	
		$V_{CC} = 5V, I_{OL} = 3.2mA$			0.4	v	
Output Voltage (Low)	V _{OL}	V _{CC} = 15V, I _{OL} = 20mA			1.0		
		$V_{CC} = 15V, I_{OL} = 50mA$			2.0		
		$V_{CC} = 5V, I_{OH} = -0.8mA$	4.0			v	
Output Voltage (High)	V _{он}	V _{CC} = 15V, I _{OH} = -0.8mA	14.3				
		V _{CC} = 15V, I _{OH} = -10mA	12.5				
		V _{CC} = 2V			200		
Supply Current	I _{cc}	V _{CC} = 18V			300	μA	
AC ELECTRICAL CHARACTE	RISTICS		1			1	
		V_{CC} = 5V, R_L = 10M Ω , C_L = 10pF		35			
Rise/ Fall Time of Output	t _{thl} , t _{tlh}				150	ns	
Guaranteed Max Osc Freq.	f _{MAX}	V _{CC} = 5V, astable mode	500			kHz	
Initial Accuracy		$R_L = 1$ to 100K Ω , $C_L = 0.1\mu F$	5			%	
Drift with Temperature		$V_{CC} = 5V, R_L = 1$ to $100K\Omega, C_L = 0.1\mu F$			0.02		
	αf	V_{CC} = 10V, R _L = 1 to 100K Ω , C _L = 0.1µF			0.03	%/°C	
		V_{CC} = 15V, R_L = 1 to 100K Ω , C_L = 0.1 μ F			0.06	1	
Deffective Oceand 11/1			1		3	%/V	
Drift with Supply Voltage	∆f	$V_{CC} = 5V, R_L = 1 \text{ to } 100K\Omega, C_L = 0.1\mu\text{F}$			6		

Note 1. Exceeding the absolute maximum ratings may damage the device.

Note 2. The device is not guaranteed to function outside its operating ratings.

Note 3. Stresses listed as the absolute maximum ratings may cause permanent damage to the device. These are for stress ratings. Functional operating of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibly to affect device reliability.

Note 4. Parameters are not 100% tested. Majority of all units meet this specification.