



Order

Now



CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

# CDx4HC405x, CDx4HCT405x High-Speed CMOS Logic Analog **Multiplexers and Demultiplexers**

#### Features 1

Texas

INSTRUMENTS

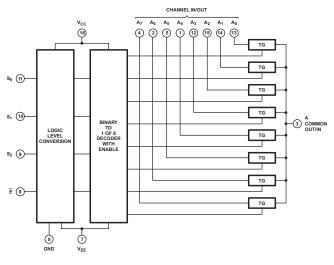
- Wide Analog Input Voltage Range: ±5-V Maximum
- Low ON-Resistance
  - 7- $\Omega$  Typical (V<sub>CC</sub> V<sub>EE</sub> = 4.5 V)
  - 40- $\Omega$  Typical (V<sub>CC</sub> V<sub>FF</sub> = 9 V)
- Low Crosstalk Between Switches
- Fast Switching and Propagation Speeds
- Break-Before-Make Switching
- Wide Operating Temperature Range: -55°C to +125°C
- CD54HC and CD74HC Types
  - Operation Control Voltage: 2 V to 6 V
  - Switch Voltage: 0 V to 10 V
- CD54HCT and CD74HCT Types
  - Operation Control Voltage: 4.5 V to 5.5 V
  - Switch Voltage: 0 V to 10 V
  - Direct LSTTL Input Logic Compatibility  $V_{IL} = 0.8$ -V Max,  $V_{IH} = 2$ -V Min
  - CMOS Input Compatibility
    - $I_{I} \leq 1 \ \mu A \text{ at } V_{OL}, V_{OH}$
- On Products Compliant to MIL-PRF-38535. All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

### 2 Applications

- **Digital Radio**
- Signal Gating
- **Factory Automation**
- Televisions
- Appliances
- Programmable Logic Circuits
- Sensors

### 3 Description

The CDx4HC405x and CDx4HCT405x devices are digitally controlled analog switches that use silicon gate CMOS technology to achieve operating speeds similar to LSTTL with the low-power consumption of standard CMOS integrated circuits.


These analog multiplexers and demultiplexers control analog voltages that may vary across the voltage supply range (for example, V<sub>CC</sub> to V<sub>EE</sub>). They are bidirectional switches that allow any analog input to be used as an output and vice versa. The switches have low ON resistance and low OFF leakages. In addition, all these devices have an enable control that, when high, disables all switches to their OFF state.

| Device Information <sup>(1)</sup>   |            |                    |  |  |  |
|-------------------------------------|------------|--------------------|--|--|--|
| PART NUMBER PACKAGE BODY SIZE (NOM) |            |                    |  |  |  |
| CD54HCx405xF                        | CDIP (16)  | 19.56 mm × 6.92 mm |  |  |  |
| CD74HCx405xE                        | PDIP (16)  | 19.30 mm × 6.35 mm |  |  |  |
| CD74HCx405xM                        | SOIC (16)  | 9.90 mm × 3.91 mm  |  |  |  |
| CD74HCx405xNS                       | SOP (16)   | 10.30 mm × 5.30 mm |  |  |  |
| CD74HCx405xPW                       | TSSOP (16) | 5.00 mm × 4.40 mm  |  |  |  |
|                                     |            |                    |  |  |  |

### Device Information(1)

(1) For all available packages, see the orderable addendum at the end of the data sheet.

### Functional Diagram of HC4051 and HCT4051







Page

## **Table of Contents**

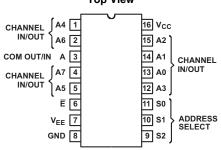
| 1 | Feat  | ures 1                                              |
|---|-------|-----------------------------------------------------|
| 2 | App   | lications1                                          |
| 3 | Desc  | cription 1                                          |
| 4 | Revi  | sion History 2                                      |
| 5 | Pin ( | Configuration and Functions 3                       |
| 6 | Spee  | cifications                                         |
|   | 6.1   | Absolute Maximum Ratings 6                          |
|   | 6.2   | ESD Ratings 6                                       |
|   | 6.3   | Recommended Operating Conditions 6                  |
|   | 6.4   | Thermal Information 7                               |
|   | 6.5   | Electrical Characteristics: HC Devices7             |
|   | 6.6   | Electrical Characteristics: HCT Devices 10          |
|   | 6.7   | Switching Characteristics, $V_{CC} = 5 V_{}$ 12     |
|   | 6.8   | Switching Characteristics, $C_L = 50 \text{ pF}$ 13 |
|   | 6.9   | Analog Channel Specifications 16                    |
|   | 6.10  | Typical Characteristics 17                          |
| 7 | Para  | meter Measurement Information 18                    |
| 8 | Deta  | iled Description 20                                 |
|   | 8.1   | Overview 20                                         |
|   |       |                                                     |

|    | 8.2  | Functional Block Diagrams                       | 20 |
|----|------|-------------------------------------------------|----|
|    | 8.3  | Feature Description                             | 22 |
|    | 8.4  | Device Functional Modes                         | 22 |
| 9  | App  | lication and Implementation                     | 23 |
|    | 9.1  | Application Information                         |    |
|    | 9.2  | Typical Application                             |    |
| 10 | Pow  | ver Supply Recommendations                      | 24 |
| 11 | Lay  | out                                             | 25 |
|    | 11.1 | Layout Guidelines                               | 25 |
|    | 11.2 | Layout Example                                  | 25 |
| 12 | Dev  | ice and Documentation Support                   | 26 |
|    | 12.1 | Documentation Support                           | 26 |
|    | 12.2 | Related Links                                   | 26 |
|    | 12.3 | Receiving Notification of Documentation Updates | 26 |
|    | 12.4 | Community Resources                             | 26 |
|    | 12.5 | Trademarks                                      | 26 |
|    | 12.6 | Electrostatic Discharge Caution                 | 26 |
|    | 12.7 | Glossary                                        | 27 |
| 13 |      | hanical, Packaging, and Orderable               |    |
|    |      | mation                                          | 27 |
|    |      |                                                 |    |

### **4** Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| С | hanges from Revision K (September 2015) to Revision L             | Page |
|---|-------------------------------------------------------------------|------|
| • | Changed Charged device model (CDM) value from: ±1000 V to: ±200 V | 6    |
| • | Added Receiving Notification of Documentation Updates section     | 26   |


#### Changes from Revision J (February 2011) to Revision K

| • | Removed Ordering Information table.                                                                                                                                                                                                                                                                                                    | 1 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| • | Added Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Detailed Description section, Applications and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section | 1 |
| • | Added Military Disclaimer to Features list.                                                                                                                                                                                                                                                                                            | 1 |



### 5 Pin Configuration and Functions

#### CD54HC4051, CD54HCT4051, CD74HC4051, CD74HCT4051 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SO, TSSOP Top View



#### Pin Functions for CDx4HCx4051B

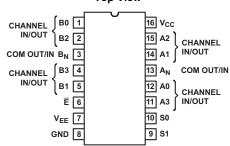
| PIN |                 | 1/0 | DESCRIPTION                                |  |  |
|-----|-----------------|-----|--------------------------------------------|--|--|
| NO. | NAME            | 1/0 | DESCRIPTION                                |  |  |
| 1   | CH A4 IN/OUT    | I/O | Channel 4 in/out                           |  |  |
| 2   | CH A6 IN/OUT    | I/O | Channel 6 in/out                           |  |  |
| 3   | COM OUT/IN      | I/O | Common out/in                              |  |  |
| 4   | CH A7 IN/OUT    | I/O | Channel 7 in/out                           |  |  |
| 5   | CH A5 IN/OUT    | I/O | Channel 5 in/out                           |  |  |
| 6   | Ē               | Ι   | Enable Channels (Active Low). See Table 1. |  |  |
| 7   | V <sub>EE</sub> | _   | Negative power input                       |  |  |
| 8   | GND             |     | Ground                                     |  |  |
| 9   | S2              | Ι   | Channel select 2. See Table 1.             |  |  |
| 10  | S1              | Ι   | Channel select 1. See Table 1.             |  |  |
| 11  | S0              | Ι   | Channel select 0. See Table 1.             |  |  |
| 12  | CH A3 IN/OUT    | I/O | Channel 3 in/out                           |  |  |
| 13  | CH A0 IN/OUT    | I/O | Channel 0 in/out                           |  |  |
| 14  | CH A1 IN/OUT    | I/O | Channel 1 in/out                           |  |  |
| 15  | CH A2 IN/OUT    | I/O | Channel 2 in/out                           |  |  |
| 16  | V <sub>CC</sub> |     | Positive power input                       |  |  |

Copyright © 1997–2017, Texas Instruments Incorporated

Submit Documentation Feedback

3

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT4053 CD54HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD5


#### CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053



www.ti.com

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

#### CD54HC4052, CD74HC4052, CD74HCT4052 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SO, TSSOP Top View

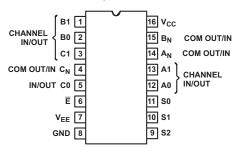


### Pin Functions for CDx4HCx4052B

| PIN |                 | 1/0 | DECODIDITION                               |  |
|-----|-----------------|-----|--------------------------------------------|--|
| NO. | NAME            | I/O | DESCRIPTION                                |  |
| 1   | CH B0 IN/OUT    | I/O | Channel B0 in/out                          |  |
| 2   | CH B2 IN/OUT    | I/O | Channel B2 in/out                          |  |
| 3   | COM B OUT/IN    | I/O | B common out/in                            |  |
| 4   | CH B3 IN/OUT    | I/O | Channel B3 in/out                          |  |
| 5   | CH B1 IN/OUT    | I/O | Channel B1 in/out                          |  |
| 6   | Ш               | Ι   | Enable channels (Active Low). See Table 2. |  |
| 7   | V <sub>EE</sub> | —   | Negative power input                       |  |
| 8   | GND             | —   | Ground                                     |  |
| 9   | S1              | Ι   | Channel select 1. See Table 2.             |  |
| 10  | S0              | I   | Channel select 0. See Table 2.             |  |
| 11  | CH A3 IN/OUT    | I/O | Channel A3 in/out                          |  |
| 12  | CH A0 IN/OUT    | I/O | Channel A0 in/out                          |  |
| 13  | COM A IN/OUT    | I/O | A common out/in                            |  |
| 14  | CH A1 IN/OUT    | I/O | Channel A1 in/out                          |  |
| 15  | CH A2 IN/OUT    | I/O | Channel A2 in/out                          |  |
| 16  | V <sub>CC</sub> |     | Positive power input                       |  |

4

Copyright © 1997–2017, Texas Instruments Incorporated


Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD54HCT4051 CD54HC4052 CD74HC4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT4053 CD54HCT405 CD54HCT405 CD



### CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

#### CD54HC4053 CD74HC4053 CD74HCT4053 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SOP, TSSOP TOP VIEW



### Pin Functions CDx4HCx4053B

| PIN |                 | I/O | DESCRIPTION                                |  |
|-----|-----------------|-----|--------------------------------------------|--|
| NO. | NAME            | 1/0 | DESCRIPTION                                |  |
| 1   | B1 IN/OUT       | I/O | B channel Y in/out                         |  |
| 2   | B0 IN/OUT       | I/O | B channel X in/out                         |  |
| 3   | C1 IN/OUT       | I/O | C channel Y in/out                         |  |
| 4   | COM C OUT/IN    | I/O | C common out/in                            |  |
| 5   | C0 IN/OUT       | I/O | C channel X in/out                         |  |
| 6   | Ē               | Ι   | Enable channels (Active Low). See Table 3. |  |
| 7   | V <sub>EE</sub> | _   | Negative power input                       |  |
| 8   | GND             | _   | Ground                                     |  |
| 9   | S2              | Ι   | Channel select 2. See Table 3.             |  |
| 10  | S1              | Ι   | Channel select 1. See Table 3.             |  |
| 11  | S0              | I   | Channel select 0. See Table 3.             |  |
| 12  | A0 IN/OUT       | I/O | A channel X in/out                         |  |
| 13  | A1 IN/OUT       | I/O | A channel Y in/out                         |  |
| 14  | COM A OUT/IN    | I/O | A common out/in                            |  |
| 15  | COM B OUT/IN    | I/O | B common out/in                            |  |
| 16  | V <sub>CC</sub> | _   | Positive power input                       |  |

Copyright © 1997-2017, Texas Instruments Incorporated

Submit Documentation Feedback

5

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT4053 CD54HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD5

TEXAS INSTRUMENTS

www.ti.com

### 6 Specifications

### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                   |                                      |                                                                     | MIN  | MAX  | UNIT |
|-------------------|--------------------------------------|---------------------------------------------------------------------|------|------|------|
| $V_{CC} - V_{EE}$ | DC supply voltage                    |                                                                     | -0.5 | 10.5 | V    |
| V <sub>CC</sub>   | DC supply voltage                    |                                                                     | -0.5 | 7    | V    |
| V <sub>EE</sub>   | DC supply voltage                    |                                                                     | 0.5  | -7   | V    |
| I <sub>IK</sub>   | DC input diode current               | $V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC} + 0.5$ V            |      | ±20  | mA   |
| I <sub>OK</sub>   | DC switch diode current              | $V_{I} < V_{EE} - 0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ |      | ±20  | mA   |
|                   | DC switch current <sup>(2)</sup>     | $V_{I} > V_{EE} - 0.5$ V or $V_{I} < V_{CC} + 0.5$ V                |      | ±25  | mA   |
| I <sub>CC</sub>   | DC V <sub>CC</sub> or ground current |                                                                     |      | ±50  | mA   |
| I <sub>EE</sub>   | DC V <sub>EE</sub> current           |                                                                     |      | -20  | mA   |
| T <sub>JMAX</sub> | Maximum junction temperature         |                                                                     |      | 150  | °C   |
| T <sub>LMAX</sub> | Maximum lead temperature             | Soldering 10 s                                                      |      | 300  | °C   |
| TJ                | Junction temperature                 |                                                                     |      | 150  | °C   |
| T <sub>stg</sub>  | Storage temperature                  |                                                                     | -65  | 150  | °C   |

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages referenced to GND unless otherwise specified.

### 6.2 ESD Ratings

|        |                                            |                                                                                | VALUE | UNIT |
|--------|--------------------------------------------|--------------------------------------------------------------------------------|-------|------|
| V      | Electrostatio discharge                    | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | ±500  | V    |
| V(ESD) | V <sub>(ESD)</sub> Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±200  | v    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

### 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                      |                                                                           |                                                          | MIN             | NOM | MAX      | UNIT |
|--------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|-----------------|-----|----------|------|
|                                      | Supply voltage range                                                      | CD54 and 74HC types                                      | 2               |     | 6        |      |
| V <sub>CC</sub>                      | $(T_A = full package temperature range)^{(2)}$                            | CD54 and 74HCT types                                     | 4.5             |     | 5.5      | V    |
| V <sub>CC</sub> –<br>V <sub>EE</sub> | Supply voltage range<br>(T <sub>A</sub> = full package temperature range) | CD54 and 74HC types, CD54 and 74HCT types (see Figure 1) | 2               |     | 10       | V    |
| $V_{\text{EE}}$                      | Supply voltage range $(T_A = full package temperature range)^{(3)}$       | CD54 and 74HC types, CD54 and 74HCT types (see Figure 2) | 0               |     | -6       | V    |
| VI                                   | DC input control voltage                                                  |                                                          | GND             |     | $V_{CC}$ | V    |
| VIS                                  | Analog switch I/O voltage                                                 |                                                          | V <sub>EE</sub> |     | $V_{CC}$ | V    |
| T <sub>A</sub>                       | Operating temperature                                                     |                                                          | -55             |     | 125      | °C   |
|                                      |                                                                           | 2 V                                                      | 0               |     | 1000     |      |
| t <sub>r</sub> , t <sub>f</sub>      | Input rise and fall times                                                 | 4.5 V                                                    | 0               |     | 500      | ns   |
|                                      |                                                                           | 6 V                                                      | 0               |     | 400      |      |

(1) For maximum reliability, nominal operating conditions must be selected so that operation is always within the ranges specified in the *Recommended Operating Conditions* table.

(2) All voltages referenced to GND unless otherwise specified.

(3) In certain applications, the external load resistor current may include both V<sub>CC</sub> and signal line components. To avoid drawing V<sub>CC</sub> current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6 V (calculated from r<sub>ON</sub> values shown in *Electrical Characteristics: HC Devices* and *Electrical Characteristics: HCT Devices* tables). No V<sub>CC</sub> current will flow through R<sub>L</sub> if the switch current flows into terminal 3 on the HC and HCT4051; terminals 3 and 13 on the HC and HCT4052; terminals 4, 14, and 15 on the HC and HCT4053.

Submit Documentation Feedback

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

### 6.4 Thermal Information

|                      |                                              |          | CD74HC4051 |            |      |  |
|----------------------|----------------------------------------------|----------|------------|------------|------|--|
|                      | THERMAL METRIC <sup>(1)</sup>                | N (PDIP) | NS (SO)    | PW (TSSOP) | UNIT |  |
|                      |                                              | 16 PINS  | 16 PINS    | 16 PINS    |      |  |
| $R_{\theta JA}$      | Junction-to-ambient thermal resistance       | 49.0     | 83.0       | 107.7      | °C/W |  |
| $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance    | 36.3     | 41.2       | 42.4       | °C/W |  |
| $R_{\theta JB}$      | Junction-to-board thermal resistance         | 29.0     | 43.3       | 52.8       | °C/W |  |
| ΨJT                  | Junction-to-top characterization parameter   | 21.2     | 9.2        | 4.2        | °C/W |  |
| Ψјв                  | Junction-to-board characterization parameter | 28.9     | 43.0       | 52.2       | °C/W |  |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

### 6.5 Electrical Characteristics: HC Devices

|                 |                          |                        | TEST C                | ONDITIONS              |                        |                    |      |     |      |      |
|-----------------|--------------------------|------------------------|-----------------------|------------------------|------------------------|--------------------|------|-----|------|------|
|                 | PARAMETERS               | V <sub>IS</sub><br>(V) | V <sub>I</sub><br>(V) | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | T <sub>A</sub>     | MIN  | ТҮР | МАХ  | UNIT |
|                 |                          |                        |                       |                        |                        | 25°C               | 1.5  |     |      |      |
|                 |                          |                        |                       |                        | 2                      | -40°C to<br>+85°C  | 1.5  |     |      |      |
|                 |                          |                        |                       |                        |                        | –55°C to<br>+125°C | 1.5  |     |      |      |
|                 |                          |                        |                       |                        |                        | 25°C               | 3.15 |     |      |      |
| V <sub>IH</sub> | High-level input voltage |                        |                       |                        | 4.5                    | -40°C to<br>+85°C  | 3.15 |     |      | V    |
|                 |                          |                        |                       |                        |                        | –55°C to<br>+125°C | 3.15 |     |      |      |
|                 |                          |                        |                       |                        |                        | 25°C               | 4.2  |     |      |      |
|                 |                          |                        |                       |                        | 6                      | –40°C to<br>+85°C  | 4.2  |     |      |      |
|                 |                          |                        |                       |                        |                        | –55°C to<br>+125°C | 4.2  |     |      |      |
|                 |                          |                        |                       |                        |                        | 25°C               |      |     | 0.5  |      |
|                 |                          |                        |                       |                        | 2                      | –40°C to<br>+85°C  |      |     | 0.5  |      |
|                 |                          |                        |                       |                        |                        | –55°C to<br>+125°C |      |     | 0.5  |      |
|                 |                          |                        |                       |                        |                        | 25°C               |      |     | 1.35 |      |
| V <sub>IL</sub> | Low-level input voltage  |                        |                       |                        | 4.5                    | –40°C to<br>+85°C  |      |     | 1.35 | V    |
|                 |                          |                        |                       |                        |                        | –55°C to<br>+125°C |      |     | 1.35 |      |
|                 |                          |                        |                       |                        |                        | 25°C               |      |     | 1.8  |      |
|                 |                          |                        |                       |                        | 6                      | -40°C to<br>+85°C  |      |     | 1.8  |      |
|                 |                          |                        |                       |                        |                        | –55°C to<br>+125°C |      |     | 1.8  |      |

### CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

TEXAS INSTRUMENTS

www.ti.com

### **Electrical Characteristics: HC Devices (continued)**

|                           |                           |                       |                        | TEST C                | ONDITIONS              |                        |                    |        |       |      |
|---------------------------|---------------------------|-----------------------|------------------------|-----------------------|------------------------|------------------------|--------------------|--------|-------|------|
|                           | PARAMET                   | ERS                   | V <sub>IS</sub><br>(V) | V <sub>I</sub><br>(V) | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | T <sub>A</sub>     | MIN TY | P MAX | UNIT |
|                           |                           |                       |                        |                       |                        |                        | 25°C               | 7      | 0 160 |      |
|                           |                           |                       |                        |                       | 0                      | 4.5                    | -40°C to<br>+85°C  |        | 200   |      |
|                           |                           |                       |                        |                       |                        |                        | –55°C to<br>+125°C |        | 240   |      |
|                           |                           |                       |                        |                       |                        |                        | 25°C               | 6      | 0 140 |      |
|                           |                           |                       | $V_{CC}$ or $V_{EE}$   |                       | 0                      | 6                      | –40°C to<br>+85°C  |        | 175   |      |
|                           |                           |                       |                        |                       |                        |                        | –55°C to<br>+125°C |        | 210   |      |
|                           |                           |                       |                        |                       |                        |                        | 25°C               | 4      | 0 120 | Ī    |
|                           |                           |                       |                        |                       | -4.5                   | 4.5                    | -40°C to<br>+85°C  |        | 150   |      |
|                           | ON                        | I <sub>O</sub> = 1 mA |                        | V <sub>IL</sub><br>or |                        |                        | –55°C to<br>+125°C |        | 180   |      |
| r <sub>ON</sub>           | resistance                | See Figure 21         |                        | V <sub>IH</sub>       |                        |                        | 25°C               | 9      | 0 180 | Ω    |
|                           |                           |                       |                        |                       | 0                      | 4.5                    | –40°C to<br>+85°C  |        | 225   |      |
|                           |                           |                       |                        |                       |                        |                        | –55°C to<br>+125°C |        | 270   |      |
|                           |                           |                       |                        |                       |                        |                        | 25°C               | 8      | 0 160 |      |
|                           |                           |                       | $V_{CC}$ to $V_{EE}$   |                       | 0                      | 6                      | –40°C to<br>+85°C  |        | 200   |      |
|                           |                           |                       |                        |                       |                        |                        | –55°C to<br>+125°C |        | 240   |      |
|                           |                           |                       |                        |                       |                        |                        | 25°C               | 4      | 5 130 |      |
|                           |                           |                       |                        |                       | -4.5                   | 4.5                    | –40°C to<br>+85°C  |        | 162   |      |
|                           |                           |                       |                        |                       |                        |                        | –55°C to<br>+125°C |        | 195   |      |
|                           |                           |                       |                        |                       | 0                      | 4.5                    | 25°C               | 1      | C     |      |
| $\Delta {\rm r}_{\rm ON}$ | Maximum ON<br>between any |                       |                        |                       | 0                      | 6                      | 25°C               | 8.     | 5     | Ω    |
|                           |                           | -                     |                        |                       | -4.5                   | 4.5                    | 25°C               |        | 5     |      |



SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

## Electrical Characteristics: HC Devices (continued)

|                 |                    |                     |                                                                              | TEST C                | ONDITIONS              |                        |                    |             |                   |    |  |
|-----------------|--------------------|---------------------|------------------------------------------------------------------------------|-----------------------|------------------------|------------------------|--------------------|-------------|-------------------|----|--|
|                 | PARAME             | TERS                | V <sub>IS</sub><br>(V)                                                       | V <sub>1</sub><br>(V) | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | T <sub>A</sub>     | MIN TYP MAX | UNIT              |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | 25°C               | ±0.1        |                   |    |  |
|                 |                    | 1 and 2<br>channels |                                                                              |                       | 0                      | 6                      | -40°C to<br>+85°C  | ±1          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | –55°C to<br>+125°C | ±1          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | 25°C               | ±0.1        |                   |    |  |
|                 |                    | 4053                |                                                                              |                       | -5                     | 5                      | –40°C to<br>+85°C  | ±1          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | –55°C to<br>+125°C | ±1          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | 25°C               | ±0.1        |                   |    |  |
|                 |                    | 4 channels          | For switch OFF:<br>When $V_{IS} = V_{CC}$ ,                                  |                       | 0                      | 6                      | –40°C to<br>+85°C  | ±1          |                   |    |  |
|                 | Switch<br>ON/OFF   |                     | $V_{OS} = V_{EE};$ When $V_{IS} = V_{EE},$ $V_{OS} = V_{CC},$ For switch ON: | V <sub>IL</sub>       |                        |                        | –55°C to<br>+125°C | ±1          |                   |    |  |
| I <sub>IZ</sub> | leakage<br>current |                     | For switch ON:<br>All applicable                                             | or<br>V <sub>IH</sub> |                        |                        | 25°C               | ±0.2        | μA                |    |  |
|                 | current            | 4052                | combinations of<br>V <sub>IS</sub> and V <sub>OS</sub>                       |                       | -5                     | 5                      | -40°C to<br>+85°C  | ±2          |                   |    |  |
|                 |                    |                     | voltage levels                                                               |                       |                        |                        | –55°C to<br>+125°C | ±2          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | 25°C               | ±0.2        |                   |    |  |
|                 |                    | 8 channels          |                                                                              |                       | 0                      | 6                      | -40°C to<br>+85°C  | ±2          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | –55°C to<br>+125°C | ±2          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | 25°C               | ±0.4        |                   |    |  |
|                 |                    | 4051                | 4051                                                                         | 4051                  |                        |                        | -5                 | 5           | -40°C to<br>+85°C | ±4 |  |
|                 |                    |                     |                                                                              |                       |                        |                        | –55°C to<br>+125°C | ±4          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | 25°C               | ±0.1        |                   |    |  |
| I <sub>IL</sub> | Control input      | leakage current     |                                                                              | V <sub>CC</sub><br>or | 0                      | 6                      | -40°C to<br>+85°C  | ±1          | μΑ                |    |  |
|                 |                    |                     |                                                                              | GND                   |                        |                        | –55°C to<br>+125°C | ±1          |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | 25°C               | 8           |                   |    |  |
|                 |                    |                     | When $V_{IS} = V_{EE}$ ,<br>$V_{OS} = V_{CC}$                                |                       | 0                      | 6                      | -40°C to<br>+85°C  | 80          |                   |    |  |
|                 | Quiescent          |                     |                                                                              | V <sub>cc</sub>       |                        |                        | –55°C to<br>+125°C | 160         |                   |    |  |
| I <sub>CC</sub> | device<br>current  | $I_{O} = 0$         |                                                                              | or<br>GND             |                        |                        | 25°C               | 16          | μA                |    |  |
|                 |                    |                     | When $V_{IS} = V_{CC}$ ,<br>$V_{OS} = V_{EE}$                                |                       | -5                     | 5                      | –40°C to<br>+85°C  | 160         |                   |    |  |
|                 |                    |                     |                                                                              |                       |                        |                        | –55°C to<br>+125°C | 320         |                   |    |  |

Copyright © 1997–2017, Texas Instruments Incorporated

Submit Documentation Feedback

9

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD5

### CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

### 6.6 Electrical Characteristics: HCT Devices

| www.ti.com |  |
|------------|--|

INSTRUMENTS

TEXAS

|                  |                 |                       |                        | TEST C                | ONDITIONS              | 6                      |                    |     |     |     |      |
|------------------|-----------------|-----------------------|------------------------|-----------------------|------------------------|------------------------|--------------------|-----|-----|-----|------|
|                  | PARAMET         | ER                    | V <sub>IS</sub><br>(V) | V <sub>I</sub><br>(V) | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | T <sub>A</sub>     | MIN | ТҮР | MAX | UNIT |
|                  |                 |                       |                        |                       |                        |                        | 25°C               | 2   |     |     |      |
| VIH              | High-level inpu | t voltage             |                        |                       |                        | 4.5<br>to              | –40°C to<br>+85°C  | 2   |     |     | V    |
|                  |                 |                       |                        |                       |                        | 5.5                    | –55°C to<br>+125°C | 2   |     |     |      |
|                  |                 |                       |                        |                       |                        |                        | 25°C               |     |     | 0.8 |      |
| V <sub>IL</sub>  | Low-level input | voltage               |                        |                       |                        | 4.5<br>to              | –40°C to<br>+85°C  |     |     | 0.8 | V    |
|                  |                 |                       |                        |                       |                        | 5.5                    | -55°C to<br>+125°C |     |     | 0.8 |      |
|                  |                 |                       |                        |                       |                        |                        | 25°C               |     | 70  | 160 |      |
|                  |                 |                       |                        |                       | 0                      | 4.5                    | -40°C to<br>+85°C  |     |     | 200 |      |
|                  |                 |                       |                        |                       |                        |                        | –55°C to<br>+125°C |     |     | 240 |      |
|                  |                 |                       | $V_{CC}$ or $V_{EE}$   |                       |                        |                        | 25°C               |     | 40  | 120 |      |
|                  |                 |                       |                        |                       | -4.5                   | 4.5                    | -40°C to<br>+85°C  |     |     | 150 |      |
|                  | <b>0</b> 11     | I <sub>O</sub> = 1 mA |                        | V <sub>IL</sub><br>or |                        |                        | –55°C to<br>+125°C |     |     | 180 |      |
| r <sub>ON</sub>  | ON resistance   | See Figure 6          |                        | or<br>V <sub>IH</sub> |                        |                        | 25°C               |     | 90  | 180 | Ω    |
|                  |                 |                       |                        |                       | 0                      | 4.5                    | -40°C to<br>+85°C  |     |     | 225 |      |
|                  |                 |                       |                        |                       |                        |                        | -55°C to<br>+125°C |     |     | 270 |      |
|                  |                 |                       | $V_{CC}$ to $V_{EE}$   |                       |                        |                        | 25°C               |     | 45  | 130 |      |
|                  |                 |                       |                        |                       | -4.5                   | 4.5                    | -40°C to<br>+85°C  |     |     | 162 |      |
|                  |                 |                       |                        |                       |                        |                        | –55°C to<br>+125°C |     |     | 195 |      |
| ٨٣               | Maximum ON r    | esistance             |                        |                       | 0                      | 4.5                    | 25°C               |     | 10  |     | Ω    |
| ∆r <sub>ON</sub> | between any tw  | vo channels           |                        |                       | -4.5                   | 4.5                    | 25°C               |     | 5   |     | 12   |



### CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

## **Electrical Characteristics: HCT Devices (continued)**

|                 |                                |                         |                                                                    | TEST CO               | ONDITION               | S                      |                    |     |     |      |      |
|-----------------|--------------------------------|-------------------------|--------------------------------------------------------------------|-----------------------|------------------------|------------------------|--------------------|-----|-----|------|------|
|                 | PARAMET                        | ER                      | V <sub>IS</sub><br>(V)                                             | v,<br>(V)             | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | T <sub>A</sub>     | MIN | ТҮР | MAX  | UNIT |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     |     | ±0.1 |      |
|                 |                                | 1 and 2<br>channels     |                                                                    |                       | 0                      | 6                      | –40°C to<br>+85°C  |     |     | ±1   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | –55°C to<br>+125°C |     |     | ±1   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     |     | ±0.1 |      |
|                 |                                | 4053                    |                                                                    |                       | -5                     | 5                      | –40°C to<br>+85°C  |     |     | ±1   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | –55°C to<br>+125°C |     |     | ±1   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     |     | ±0.1 |      |
|                 |                                | 4 channels              | For switch OFF:<br>When $V_{IS} = V_{CC}$ ,                        |                       | 0                      | 6                      | –40°C to<br>+85°C  |     |     | ±1   |      |
|                 | Switch<br>ON/OFF               |                         | $V_{OS} = V_{EE};$<br>When $V_{IS} = V_{EE},$<br>$V_{OS} = V_{CC}$ | V <sub>IL</sub>       |                        |                        | –55°C to<br>+125°C |     |     | ±1   |      |
| I <sub>IZ</sub> | leakage<br>current             |                         | $V_{OS} = V_{CC}$<br>For switch ON:<br>All applicable              | or<br>V <sub>IH</sub> |                        |                        | 25°C               |     |     | ±0.2 | μA   |
|                 | current                        | 4052                    | combinations of $V_{IS}$ and $V_{OS}$                              |                       | -5                     | 5                      | –40°C to<br>+85°C  |     |     | ±2   |      |
|                 |                                |                         | voltage levels                                                     |                       |                        |                        | –55°C to<br>+125°C |     |     | ±2   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     |     | ±0.2 |      |
|                 |                                | 8 channels              |                                                                    |                       | 0                      | 6                      | –40°C to<br>+85°C  |     |     | ±2   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | –55°C to<br>+125°C |     |     | ±2   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     |     | ±0.4 |      |
|                 |                                | 4051                    |                                                                    |                       | -5                     | 5                      | –40°C to<br>+85°C  |     |     | ±4   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | –55°C to<br>+125°C |     |     | ±4   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     |     | ±0.1 |      |
| I <sub>IL</sub> | Control input le               | akage current           |                                                                    | See <sup>(1)</sup>    |                        | 5.5                    | -40°C to<br>+85°C  |     |     | ±1   | μA   |
|                 |                                |                         |                                                                    |                       |                        |                        | –55°C to<br>+125°C |     |     | ±1   |      |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     |     | 8    |      |
|                 |                                |                         | When $V_{IS} = V_{EE}$ ,<br>$V_{OS} = V_{CC}$                      |                       | 0                      | 5.5                    | –40°C to<br>+85°C  |     |     | 80   | μA   |
|                 | Quiescent                      |                         | -05 -00                                                            | V <sub>cc</sub>       |                        |                        | –55°C to<br>+125°C |     |     | 160  |      |
| I <sub>CC</sub> | device<br>current              | I <sub>O</sub> = 0      |                                                                    | or<br>GND             |                        |                        | 25°C               |     |     | 16   |      |
|                 |                                |                         | When $V_{IS} = V_{CC}$ ,<br>$V_{OS} = V_{EE}$                      |                       | -4.5                   | 5.5                    | –40°C to<br>+85°C  |     |     | 160  | μA   |
|                 |                                |                         | ·05 - •EE                                                          |                       |                        |                        | –55°C to<br>+125°C |     |     | 320  |      |
|                 |                                |                         |                                                                    |                       |                        |                        | 25°C               |     | 100 | 360  |      |
| $\Delta I_{CC}$ | Additional quie device current | scent<br>per input pin: | $\Delta I_{CC}^{(2)}$                                              | V <sub>CC</sub> – 2.1 |                        | 4.5 to 5.5             | –40°C to<br>+85°C  |     |     | 450  | μA   |
|                 | 1 unit load <sup>(2)</sup>     |                         |                                                                    |                       |                        |                        | –55°C to<br>+125°C |     |     | 490  |      |

(1) Any voltage between  $V_{CC}$  and GND. (2) For dual-supply systems, theoretical worst-case ( $V_1 = 2.4 \text{ V}$ ,  $V_{CC} = 5.5 \text{ V}$ ) specification is 1.8 mA.

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD74HCT4052 CD54HC4053 CD74HC4053 CD54HCT4053 CD74HCT4053

SCHS122L - NOVEMBER 1997-REVISED FEBRUARY 2017

### 6.7 Switching Characteristics, $V_{cc} = 5 V$

 $V_{CC}$  = 5 V,  $T_A$  = 25°C, input t<sub>r</sub>, t<sub>f</sub> = 6 ns

|                                     | PARAMETER                                    | TEST CO                                | NDITIONS    | C <sub>L</sub><br>(pF) | MIN TYP MAX | UNIT |
|-------------------------------------|----------------------------------------------|----------------------------------------|-------------|------------------------|-------------|------|
|                                     |                                              |                                        | CDx4HC4051  |                        | 4           |      |
|                                     |                                              |                                        | CDx4HCT4051 |                        | 4           |      |
|                                     |                                              | Switch IN to OUT                       | CDx4HC4052  | 15                     | 4           | ns   |
| t <sub>PHL</sub> , t <sub>PLH</sub> |                                              | Switch IN to OUT                       | CDx4HCT4052 | 15                     | 4           | 115  |
|                                     |                                              |                                        | CDx4HC4053  |                        | 4           |      |
|                                     |                                              |                                        | CDx4HCT4053 |                        | 4           |      |
|                                     |                                              |                                        | CDx4HC4051  |                        | 19          |      |
|                                     |                                              |                                        | CDx4HCT4051 |                        | 19          | Ī    |
|                                     | Dranagation dalay                            | Switch turn-off (S or $\overline{E}$ ) | CDx4HC4052  | 15                     | 21          |      |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Propagation delay                            | Switch turn-oir (S or E)               | CDx4HCT4052 | 15                     | 21          | ns   |
|                                     |                                              |                                        | CDx4HC4053  |                        | 18          | Ī    |
|                                     |                                              |                                        | CDx4HCT4053 |                        | 18          |      |
|                                     |                                              |                                        | CDx4HC4051  |                        | 19          |      |
|                                     |                                              |                                        | CDx4HCT4051 |                        | 23          | Ī    |
|                                     |                                              | Switch turn-on (S or $\overline{E}$ )  | CDx4HC4052  | 15                     | 27          | ns   |
| t <sub>PZH</sub> , t <sub>PZL</sub> |                                              | Switch turn-on (S or E)                | CDx4HCT4052 | 15                     | 29          | ns   |
|                                     |                                              |                                        | CDx4HC4053  |                        | 18          |      |
|                                     |                                              |                                        | CDx4HCT4053 |                        | 20          | Ī    |
|                                     |                                              |                                        | CDx4HC4051  |                        | 50          |      |
|                                     |                                              |                                        | CDx4HCT4051 |                        | 52          | Ī    |
|                                     | Power dissipation                            |                                        | CDx4HC4052  |                        | 74          | ъF   |
| C <sub>PD</sub>                     | Power dissipation capacitance <sup>(1)</sup> |                                        | CDx4HCT4052 |                        | 76          | pF   |
|                                     |                                              |                                        | CDx4HC4053  |                        | 38          |      |
|                                     |                                              |                                        | CDx4HCT4053 |                        | 42          |      |

(1)  $C_{PD}$  is used to determine the dynamic power consumption, per package.  $P_D = C_{PD} V_{CC}^2 f_I + \sum (C_L + C_S) V_{CC}^2 f_O$ ,  $f_O$  = output frequency,  $f_I$  = input frequency,  $C_L$  = output load capacitance,  $C_S$  = switch capacitance,  $V_{CC}$  = supply voltage

Submit Documentation Feedback

12

Copyright © 1997–2017, Texas Instruments Incorporated

www.ti.com



## 6.8 Switching Characteristics, $C_L = 50 \text{ pF}$

 $C_L = 50 \text{ pF}$ , input  $t_r$ ,  $t_f = 6 \text{ ns}$ 

|                    | PARAMETER                                    |      | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | TEST CON                                | DITIONS | MIN MAX | UNIT |
|--------------------|----------------------------------------------|------|------------------------|------------------------|-----------------------------------------|---------|---------|------|
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC      | 60      |      |
|                    |                                              |      | 0                      | 2                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC      | 75      |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC      | 90      |      |
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC, HCT | 12      |      |
|                    |                                              |      | 0                      | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC, HCT | 15      |      |
| t <sub>PLH</sub> , | Propagation dela                             | av.  |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC, HCT | 18      |      |
| t <sub>PHL</sub>   | switch in to out                             |      |                        |                        | T <sub>A</sub> = 25°C                   | HC      | 10      | ns   |
|                    |                                              |      | 0                      | 6                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC      | 13      |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC      | 15      |      |
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC, HCT | 8       |      |
|                    |                                              |      | -4.5                   | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC, HCT | 10      |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC, HCT | 12      |      |
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC      | 225     |      |
|                    |                                              |      | 0                      | 2                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC      | 280     |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC      | 340     |      |
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC, HCT | 45      |      |
|                    | Maximum                                      |      | 0                      | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC, HCT | 56      |      |
| t <sub>PHZ</sub> , | switch turn                                  | 10=1 |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC, HCT | 68      |      |
| t <sub>PLZ</sub>   | OFF dela <u>y</u><br>from S or E             | 4051 |                        |                        | T <sub>A</sub> = 25°C                   | HC      | 38      | ns   |
|                    | to switch output                             |      | 0                      | 6                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC      | 48      |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to +125°C          | HC      | 57      |      |
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC, HCT | 32      |      |
|                    |                                              |      | -4.5                   | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC, HCT | 40      |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC, HCT | 48      |      |
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC      | 250     |      |
|                    |                                              |      | 0                      | 2                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC      | 315     |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC      | 375     |      |
|                    |                                              |      |                        |                        | T <sub>A</sub> = 25°C                   | HC, HCT | 50      |      |
|                    |                                              |      | 0                      | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC, HCT | 63      |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to +125°C          | HC, HCT | 75      |      |
|                    | Maximum<br>switch turn                       |      |                        |                        | T <sub>A</sub> = 25°C                   | HC      | 43      |      |
| t <sub>PHZ</sub> , | OFF delay_                                   | 4052 | 0                      | 6                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | HC      | 54      | ns   |
| t <sub>PLZ</sub>   | from S or $\overline{E}$<br>to switch output |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HC      | 65      |      |
|                    | to switch output                             |      |                        |                        | T 0500                                  | HC      | 38      |      |
|                    |                                              |      |                        |                        | $T_A = 25^{\circ}C$                     | НСТ     | 38      |      |
|                    |                                              |      | 4.5                    | 4.5                    | T 4000 4 0500                           | HC      | 48      |      |
|                    |                                              |      | -4.5                   | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | НСТ     | 48      |      |
|                    |                                              |      |                        |                        | T 5500 ( 40500                          | HC      | 57      |      |
|                    |                                              |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$ | HCT     | 57      |      |

Copyright © 1997–2017, Texas Instruments Incorporated

Submit Documentation Feedback 13

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD74HC4053 CD74HC4053 CD74HCT4053 CD74HCT4053 CD74HCT4053 CD74HCT4053 CD74HC74053 CD



### Switching Characteristics, C<sub>L</sub> = 50 pF (continued)

 $C_L = 50 \text{ pF}$ , input  $t_r$ ,  $t_f = 6 \text{ ns}$ 

|         | PARAMETER                        |       | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | TEST CON                                         | DITIONS | MIN MAX | UNIT |
|---------|----------------------------------|-------|------------------------|------------------------|--------------------------------------------------|---------|---------|------|
|         |                                  |       |                        |                        | T <sub>A</sub> = 25°C                            | HC      | 210     |      |
|         |                                  |       | 0                      | 2                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | HC      | 265     |      |
|         |                                  |       |                        |                        | $T_A = -55^{\circ}C$ to +125°C                   | HC      | 315     |      |
|         |                                  |       |                        |                        | T 0500                                           | HC      | 42      |      |
|         |                                  |       |                        |                        | $T_A = 25^{\circ}C$                              | HCT     | 44      |      |
|         |                                  |       | 0                      | 4.5                    | T 1000 1 0500                                    | HC      | 53      |      |
| Maximum |                                  |       | 0                      | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | HCT     | 53      |      |
|         | Maximum                          |       |                        |                        | T 5500 / 40500                                   | HC      | 63      |      |
| HZ,     | switch turn                      | 10.50 |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$          | HCT     | 66      |      |
| LZ      | OFF dela <u>y</u><br>from S or E | 4053  |                        |                        | T <sub>A</sub> = 25°C                            | HC      | 36      | ns   |
|         | to switch output                 |       | 0                      | 6                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | HC      | 45      |      |
|         |                                  |       |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$          | HC      | 54      |      |
|         |                                  |       |                        |                        |                                                  | HC      | 29      |      |
|         |                                  |       |                        |                        | $T_A = 25^{\circ}C$                              | HCT     | 31      |      |
|         |                                  |       |                        |                        | T 1000 1 0700                                    | HC      | 36      |      |
|         |                                  |       | -4.5                   | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | HCT     | 39      |      |
|         |                                  |       |                        |                        |                                                  | HC      | 44      |      |
|         |                                  |       |                        |                        | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$   | HCT     | 47      |      |
|         |                                  |       |                        |                        | T <sub>A</sub> = 25°C                            | HC      | 225     |      |
|         |                                  |       | 0                      | 2                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | HC      | 280     |      |
|         |                                  |       |                        |                        | $T_A = -55^{\circ}C$ to +125°C                   | HC      | 340     |      |
|         |                                  |       |                        |                        |                                                  | HC      | 45      |      |
|         |                                  |       |                        |                        | $T_A = 25^{\circ}C$                              | HCT     | 55      |      |
|         |                                  |       | _                      |                        | _                                                | HC      | 56      |      |
|         |                                  |       | 0                      | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | HCT     | 69      |      |
|         | Maximum                          |       |                        |                        | <b>T T T T T T T T T T</b>                       | HC      | 68      |      |
| ZL,     | switch turn                      |       |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$          | НСТ     | 83      |      |
| ZH      | ON delay<br>from S or E          | 4051  |                        |                        | T <sub>A</sub> = 25°C                            | HC      | 38      | ns   |
|         | to switch output                 |       | 0                      | 6                      | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$    | HC      | 48      |      |
|         |                                  |       |                        |                        | $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ | HC      | 57      |      |
|         |                                  |       |                        |                        |                                                  | HC      | 32      |      |
|         |                                  |       |                        |                        | $T_A = 25^{\circ}C$                              | HCT     | 39      |      |
|         |                                  |       |                        |                        | -                                                | HC      | 40      |      |
|         |                                  |       | -4.5                   | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | НСТ     | 49      |      |
|         |                                  |       |                        |                        |                                                  | HC      | 48      |      |
|         |                                  |       |                        |                        | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$   | НСТ     | 59      |      |

Copyright © 1997–2017, Texas Instruments Incorporated

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD74HC4053 CD74HC4053 CD54HCT4053 CD74HCT4053 CD74HCT4053 CD74HCT4053 CD74HC74053 CD



### Switching Characteristics, C<sub>L</sub> = 50 pF (continued)

 $C_L = 50 \text{ pF}$ , input  $t_r$ ,  $t_f = 6 \text{ ns}$ 

| PARAMETE                                              | R    | V <sub>EE</sub><br>(V) | V <sub>cc</sub><br>(V) | TEST CON                                         | DITIONS | MIN MAX | UNIT |
|-------------------------------------------------------|------|------------------------|------------------------|--------------------------------------------------|---------|---------|------|
|                                                       |      |                        |                        | T <sub>A</sub> = 25°C                            | HC      | 325     |      |
|                                                       |      | 0                      | 2                      | $T_A = -40^{\circ}C$ to +85°C                    | HC      | 405     |      |
|                                                       |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$          | HC      | 490     |      |
|                                                       |      |                        |                        | T 0700                                           | HC      | 65      |      |
|                                                       |      |                        |                        | $T_A = 25^{\circ}C$                              | НСТ     | 70      |      |
|                                                       |      |                        |                        |                                                  | HC      | 81      |      |
|                                                       |      | 0                      | 4.5                    | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$    | HCT     | 68      |      |
| Maximum                                               |      |                        |                        | T                                                | HC      | 98      |      |
| switch turn                                           | 1050 |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$          | HCT     | 105     |      |
| <sup>22L</sup> ON delay<br><sup>22H</sup> from S or E | 4052 |                        |                        | T <sub>A</sub> = 25°C                            | HC      | 55      | ns   |
| to switch out                                         | out  | 0                      | 6                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | HC      | 69      |      |
|                                                       |      |                        |                        | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$   | HC      | 83      |      |
|                                                       |      |                        |                        |                                                  | HC      | 46      |      |
|                                                       |      |                        |                        | $T_A = 25^{\circ}C$                              | НСТ     | 48      |      |
|                                                       |      |                        |                        | <b>T</b> 1000                                    | HC      | 58      |      |
|                                                       |      | -4.5                   | 4.5                    | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$    | НСТ     | 60      |      |
|                                                       |      |                        |                        |                                                  | HC      | 69      |      |
|                                                       |      |                        |                        | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$   | НСТ     | 72      |      |
|                                                       |      |                        |                        | T <sub>A</sub> = 25°C                            | HC      | 220     |      |
|                                                       |      | 0                      | 2                      | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$    | HC      | 275     |      |
|                                                       |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$          | HC      | 330     |      |
|                                                       |      |                        |                        |                                                  | HC      | 44      |      |
|                                                       |      |                        |                        | $T_A = 25^{\circ}C$                              | НСТ     | 48      |      |
|                                                       |      |                        |                        |                                                  | HC      | 55      |      |
|                                                       |      | 0                      | 4.5                    | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$    | НСТ     | 60      |      |
| Maximum                                               |      |                        |                        | -                                                | HC      | 66      |      |
| switch turn                                           |      |                        |                        | $T_A = -55^{\circ}C$ to $+125^{\circ}C$          | НСТ     | 72      |      |
| <sup>ZL,</sup> ON delay<br><sup>ZH</sup> from S or E  | 4053 |                        |                        | $T_A = 25^{\circ}C$                              | HC      | 37      | ns   |
| to switch out                                         | out  | 0                      | 6                      | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$    | HC      | 47      |      |
|                                                       |      |                        |                        | $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ | HC      | 56      |      |
|                                                       |      |                        |                        |                                                  | HC      | 31      |      |
|                                                       |      |                        |                        | $T_A = 25^{\circ}C$                              | НСТ     | 34      |      |
|                                                       |      |                        |                        | -                                                | HC      | 39      |      |
|                                                       |      | -4.5                   | 4.5                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$           | НСТ     | 43      |      |
|                                                       |      |                        |                        | _                                                | HC      | 47      |      |
|                                                       |      |                        |                        | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$   | НСТ     | 51      |      |
|                                                       |      |                        |                        | $T_A = 25^{\circ}C$                              | HC, HCT | 10      |      |
| Input (control                                        | )    |                        |                        | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$    | HC, HCT | 10      | pF   |
| capacitance                                           |      |                        |                        | $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ | HC, HCT | 10      | •    |

Copyright © 1997–2017, Texas Instruments Incorporated

Submit Documentation Feedback 15

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD5

**EXAS** INSTRUMENTS

www.ti.com

### 6.9 Analog Channel Specifications

Typical values at  $T_A = 25^{\circ}C$ 

|                  | PARAMETER                                     | TEST CONDITIONS                 | HC, HCT TYPES | V <sub>EE</sub><br>(V) | V <sub>CC</sub><br>(V) | ТҮР    | UNIT |
|------------------|-----------------------------------------------|---------------------------------|---------------|------------------------|------------------------|--------|------|
| CI               | Switch input capacitance                      |                                 | All           |                        |                        | 5      | pF   |
|                  |                                               |                                 | 4051          |                        |                        | 25     |      |
| C <sub>COM</sub> | Common output capacitance                     |                                 | 4052          |                        |                        | 12     | pF   |
|                  |                                               |                                 | 4053          |                        |                        | 8      |      |
|                  |                                               |                                 | 4051          |                        |                        | 145    |      |
|                  | Minimum quitch frequency                      |                                 | 4052          | -2.25                  | 2.25                   | 165    |      |
| £                | Minimum switch frequency<br>response at –3 dB | See Figure 10 <sup>(1)(2)</sup> | 4053          |                        |                        | 200    | MHz  |
| f <sub>MAX</sub> | (see Figure 3, Figure 5, and                  |                                 | 4051          |                        |                        | 180    |      |
|                  | Figure 7)                                     |                                 | 4052          | -4.5                   | 4.5                    | 185    |      |
|                  |                                               |                                 | 4053          |                        |                        | 200    |      |
|                  | Sine-wave distortion                          | See Figure 12                   | All           | -2.25%                 | 2.25%                  | 0.035% |      |
|                  | Sine-wave distortion                          | See Figure 12                   | All           | -4.5%                  | 4.5%                   | 0.018% |      |
|                  |                                               |                                 | 4051          | -2.25                  | 2.25                   | -73    |      |
|                  |                                               |                                 | 4052          |                        |                        | -65    |      |
|                  | Switch OFF signal feedthrough                 | See Figure 14 <sup>(2)(3)</sup> | 4053          |                        |                        | -64    | dB   |
|                  | (see Figure 4, Figure 6, and<br>Figure 8)     |                                 | 4051          | -4.5                   | 4.5                    | -75    | uБ   |
|                  |                                               |                                 | 4052          |                        |                        | -67    |      |
|                  |                                               |                                 | 4053          |                        |                        | -66    |      |

Adjust input voltage to obtain 0 dBm at  $V_{OS}$  for  $f_{IN} = 1$  MHz. (1)

 $V_{IS}$  is centered at  $(V_{CC} - V_{EE}) / 2$ . Adjust input for 0 dBm. (2)

(3)

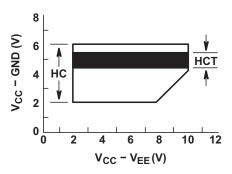
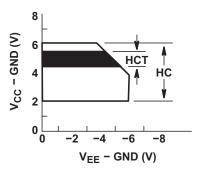
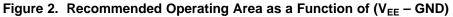
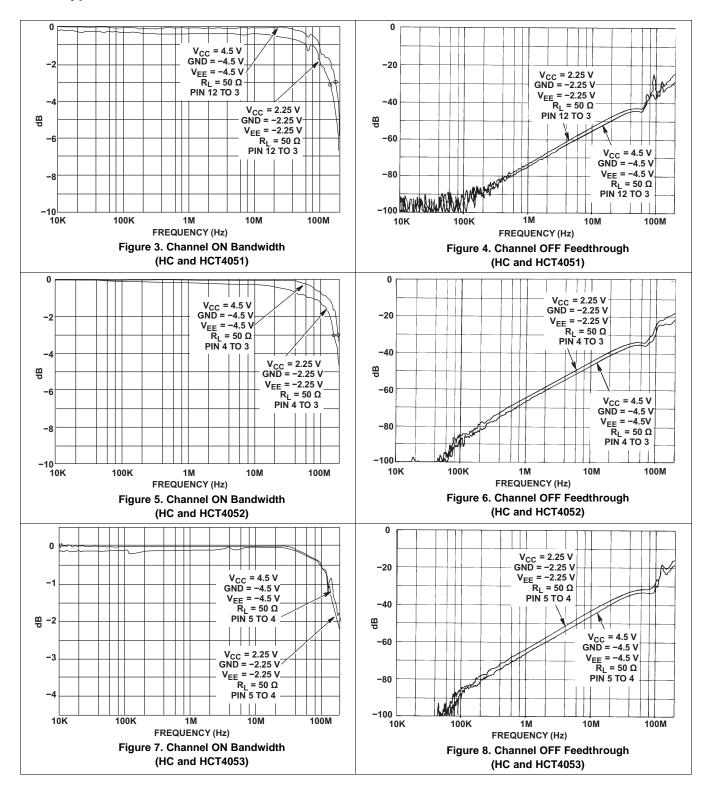





Figure 1. Recommended Operating Area as a Function of (V<sub>CC</sub> – V<sub>EE</sub>)

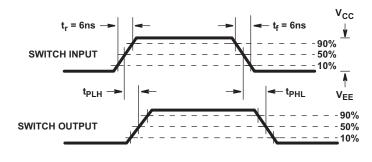




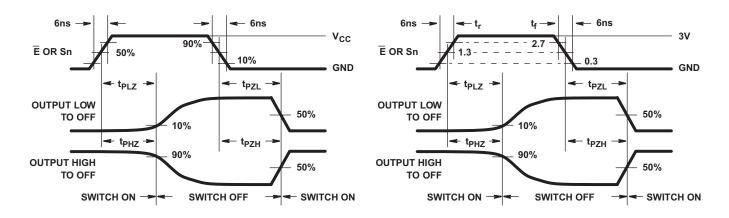



#### CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

www.ti.com


SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

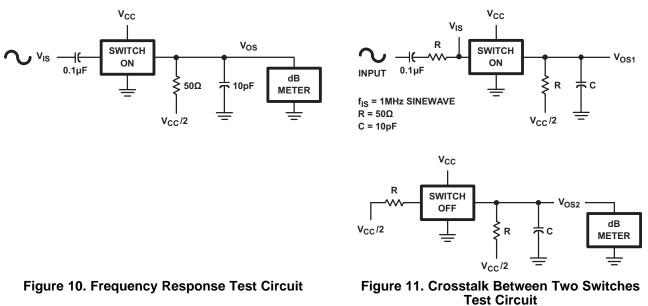
### 6.10 Typical Characteristics




Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD5

### 7 Parameter Measurement Information








(FIGURE B) HC TYPES

(FIGURE C) HCT TYPES

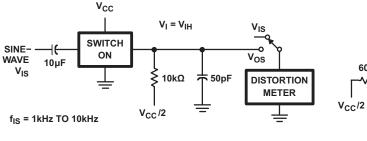
Figure 9. Switch Propagation Delay, Turn-On, Turn-Off Times



Submit Documentation Feedback

18

Copyright © 1997-2017, Texas Instruments Incorporated


Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD74HCT4052 CD54HC4053 CD74HC4053 CD54HCT4053 CD74HCT4053

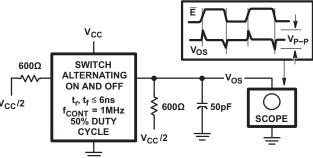
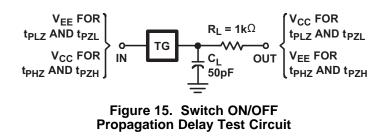
www.ti.com



#### CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017



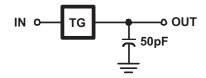








Figure 14. Switch OFF Signal Feedthrough







Copyright © 1997–2017, Texas Instruments Incorporated

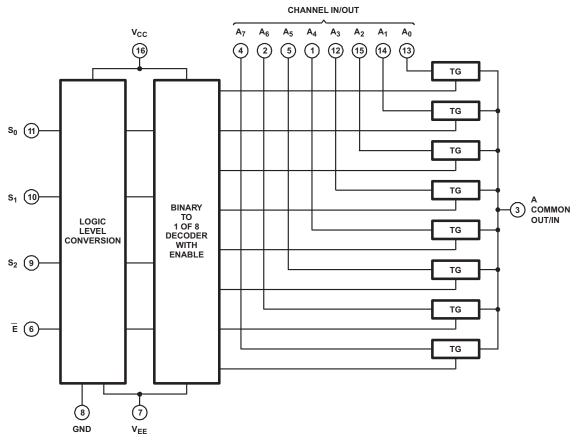
Submit Documentation Feedback 19

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD54HCT4053 CD54HCT405 CD54HCT405 CD54HCT4053 CD54HCT4053 CD

Texas Instruments

### 8 Detailed Description

### 8.1 Overview


The CDx4HCx4051 devices are a single 8-channel multiplexer having three binary control inputs,  $S_0$ ,  $S_1$ , and  $S_2$  and an ENABLE input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

The CDx4HCx4052 devices are a differential 4-channel multiplexer having two binary control inputs,  $S_0$  and  $S_1$ , and an ENABLE input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

The CDx4HCx4053 devices are a triple 2-channel multiplexer having three separate digital control inputs,  $S_0$ ,  $S_1$ , and  $S_2$  and an ENABLE input. Each control input selects one of a pair of channels that are connected in a single-pole, double-throw configuration.

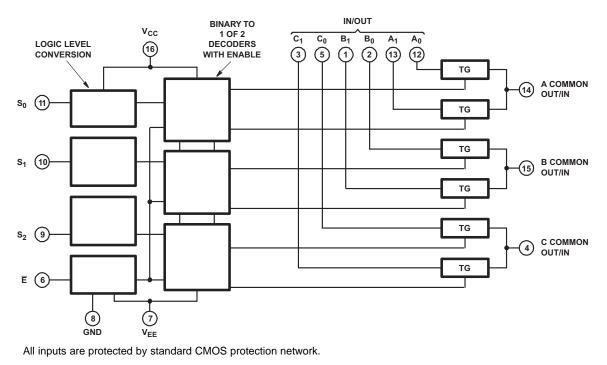
When these devices are used as demultiplexers, the CHANNEL IN/OUT terminals are the outputs and the COMMON OUT/IN terminals are the inputs.

### 8.2 Functional Block Diagrams



All inputs are protected by standard CMOS protection network.

Figure 17. CDx4HCx4051 Functional Block Diagram




### **Functional Block Diagrams (continued)**



All inputs are protected by standard CMOS protection network.





#### Figure 19. CDx4HCx4053 Functional Block Diagram

Copyright © 1997-2017, Texas Instruments Incorporated

Submit Documentation Feedback 21

TEXAS INSTRUMENTS

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017

### 8.3 Feature Description

The CDx4HCx405x line of multiplexers and demultiplexers can accept a wide range of analog signal levels from –5 to +5 V. They have low ON resistance, typically 70- $\Omega$  for V<sub>CC</sub> – V<sub>EE</sub> = 4.5 V and 40- $\Omega$  for V<sub>C</sub> – V<sub>EE</sub> = 4.5 V, which allows for very little signal loss through the switch.

Binary address decoding on chip makes channel selection easy. When channels are changed, a break-beforemake system eliminates channel overlap.

### 8.4 Device Functional Modes

| Table 1. CD54HC4051, CD74HC4051, CD54HCT4051, CD74HCT4051 Function Table <sup>(1)</sup> |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

|        | INPUT          | STATES         |                | ON      |
|--------|----------------|----------------|----------------|---------|
| ENABLE | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | CHANNEL |
| L      | L              | L              | L              | A0      |
| L      | L              | L              | Н              | A1      |
| L      | L              | Н              | L              | A2      |
| L      | L              | Н              | Н              | A3      |
| L      | Н              | L              | L              | A4      |
| L      | Н              | L              | Н              | A5      |
| L      | Н              | Н              | L              | A6      |
| L      | Н              | Н              | Н              | A7      |
| Н      | Х              | Х              | Х              | None    |

(1) X = Don't care

### Table 2. CD54HC4052, CD74HC4052, CD54HCT4052, CD74HCT4052 Function Table<sup>(1)</sup>

|        | INPUT STATES   |    | ON       |
|--------|----------------|----|----------|
| ENABLE | S <sub>1</sub> | So | CHANNELS |
| L      | L              | L  | A0, B0   |
| L      | L              | Н  | A1, B1   |
| L      | Н              | L  | A2, B2   |
| L      | Н              | Н  | A3, B3   |
| Н      | Х              | Х  | None     |

(1) X = Don't care

### Table 3. CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053 Function Table<sup>(1)</sup>

|        | INPUT S        | STATES         |                | ON         |
|--------|----------------|----------------|----------------|------------|
| ENABLE | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | CHANNELS   |
| L      | L              | L              | L              | C0, B0, A0 |
| L      | L              | L              | Н              | C0, B0, A1 |
| L      | L              | Н              | L              | C0, B1, A0 |
| L      | L              | Н              | Н              | C0, B1, A1 |
| L      | Н              | L              | L              | C1, B0, A0 |
| L      | Н              | L              | Н              | C1, B0, A1 |
| L      | Н              | Н              | L              | C1, B1, A0 |
| L      | Н              | Н              | Н              | C1, B1, A1 |
| Н      | Х              | Х              | Х              | None       |

(1) X = Don't care

22 Submit Documentation Feedback

Copyright © 1997–2017, Texas Instruments Incorporated

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD54HCT4051 CD54HC4052 CD74HC4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54HC



SCHS122L - NOVEMBER 1997 - REVISED FEBRUARY 2017

## 9 Application and Implementation

### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 9.1 Application Information

The CDx4HCx405x line of multiplexers and demultiplexers can be used for a wide variety of applications.

### 9.2 Typical Application

One application of the CD74HC4051 device is used in conjunction with a microcontroller to poll a keypad. Figure 20 shows the basic schematic for such a polling system. The microcontroller uses the channel-select pins to cycle through the different channels while reading the input to see if a user is pressing any of the keys. This is a very robust setup that allows for simultaneous key presses with very little power consumption. It also uses very few pins on the microcontroller. The down side of polling is that the microcontroller must frequently scan the keys for a press.

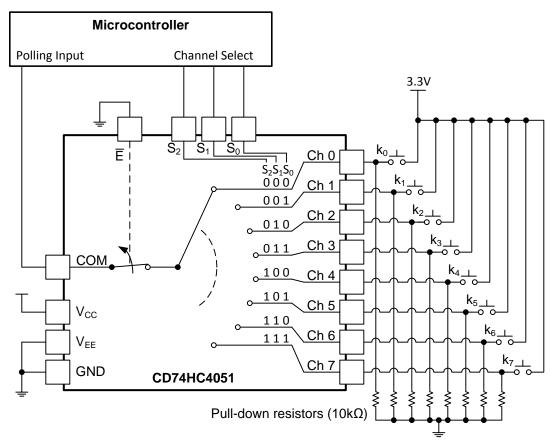



Figure 20. CD74HC4051 Being Used to Help Read Button Presses on a Keypad

### 9.2.1 Design Requirements

These devices use CMOS technology and have balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions must be considered to prevent ringing.

Copyright © 1997–2017, Texas Instruments Incorporated

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HC4053 CD54HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT

### Typical Application (continued)

See Table 4 for the input loading details.

### Table 4. HCT Input Loading Table

| TYPE       | INPUT | UNIT LOADS <sup>(1)</sup> |
|------------|-------|---------------------------|
| 4051, 4053 | All   | 0.5                       |
| 4052       | All   | 0.4                       |

(1) Unit load is  $\Delta I_{CC}$  limit specified in *Specifications*, for example, 360-mA MAX at 25°C.

### 9.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
  - For switch time specifications, see propagation delay times in *Electrical Characteristics: HC Devices*.
  - Inputs must not be pushed more than 0.5 V above V<sub>DD</sub> or below V<sub>EE</sub>.
  - For input voltage level specifications for control inputs, see V<sub>IH</sub> and V<sub>IL</sub> in *Electrical Characteristics: HC Devices*.
- 2. Recommended output conditions:
  - Outputs must not be pulled above V<sub>DD</sub> or below V<sub>EE</sub>.
- 3. Input and output current consideration:
  - The CDx4HCx405x series of parts do not have internal current-drive circuitry, and thus cannot sink or source current. Any current will be passed through the device.

#### 9.2.3 Application Curve

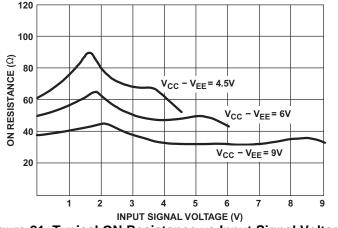



Figure 21. Typical ON Resistance vs Input Signal Voltage

### **10** Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Electrical Characteristics: HC Devices*.

Each V<sub>CC</sub> terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- $\mu$ F bypass capacitor is recommended. If there are multiple pins labeled V<sub>CC</sub>, then a 0.01- $\mu$ F or 0.022- $\mu$ F capacitor is recommended for each V<sub>CC</sub> because the V<sub>CC</sub> pins will be tied together internally. For devices with dual-supply pins operating at different voltages, for example V<sub>CC</sub> and V<sub>DD</sub>, a 0.1- $\mu$ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1- $\mu$ F and a 1- $\mu$ F capacitor are commonly used in parallel. For best results, the bypass capacitor or capacitors must be installed as close as possible to the power terminal.

4 Submit Documentation Feedback



### 11 Layout

### 11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change in width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This change in width upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace, thus resulting in the reflection. Not all PCB traces can be straight, so they will have to turn corners. Figure 22 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

### 11.2 Layout Example

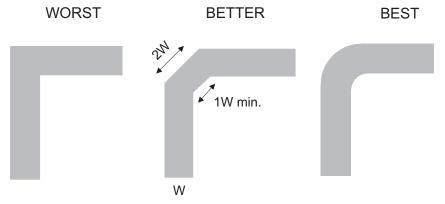



Figure 22. Trace Example

Copyright © 1997–2017, Texas Instruments Incorporated

Submit Documentation Feedback 25

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD54HCT4053 CD554HCT4053 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54HCT405 CD54

SCHS122L-NOVEMBER 1997-REVISED FEBRUARY 2017



### **12 Device and Documentation Support**

### **12.1** Documentation Support

#### 12.1.1 Related Documentation

For related documentation see the following: Implications of Slow or Floating CMOS Inputs, SCBA004

### 12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

| PARTS       | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL<br>DOCUMENTS | TOOLS &<br>SOFTWARE | SUPPORT &<br>COMMUNITY |
|-------------|----------------|--------------|------------------------|---------------------|------------------------|
| CD54HC4051  | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD74HC4051  | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD54HCT4051 | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD74HCT4051 | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD54HC4052  | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD74HC4052  | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD54HCT4052 | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD74HCT4052 | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD54HC4053  | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD74HC4053  | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD54HCT4053 | Click here     | Click here   | Click here             | Click here          | Click here             |
| CD74HCT4053 | Click here     | Click here   | Click here             | Click here          | Click here             |

#### Table 5. Related Links

### 12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E<sup>™</sup> Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

### 12.6 Electrostatic Discharge Caution



26

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Submit Documentation Feedback

Copyright © 1997–2017, Texas Instruments Incorporated

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD54HC4053 CD54HCT4053 CD554HCT4053 CD54HCT4053 CD54HCT405 CD54HCT405 CD



### 12.7 Glossary

### SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 1997–2017, Texas Instruments Incorporated



25-Oct-2016

### **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type | 0       | Pins | •    | Eco Plan                   | Lead/Ball Finish  | MSL Peak Temp      | Op Temp (°C) | Device Marking                        | Samples |
|------------------|--------|--------------|---------|------|------|----------------------------|-------------------|--------------------|--------------|---------------------------------------|---------|
|                  | (1)    |              | Drawing |      | Qty  | (2)                        | (6)               | (3)                |              | (4/5)                                 |         |
| 5962-8775401EA   | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | 5962-8775401EA<br>CD54HC4053F3A       | Samples |
| 5962-8855601EA   | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | 5962-8855601EA<br>CD54HC4052F3A       | Samples |
| 5962-9065401MEA  | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | 5962-9065401ME<br>A<br>CD54HCT4051F3A | Samples |
| CD54HC4051F      | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | CD54HC4051F                           | Samples |
| CD54HC4051F3A    | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | CD54HC4051F3A                         | Samples |
| CD54HC4052F      | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | CD54HC4052F                           | Samples |
| CD54HC4052F3A    | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | 5962-8855601EA<br>CD54HC4052F3A       | Samples |
| CD54HC4053F      | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | CD54HC4053F                           | Samples |
| CD54HC4053F3A    | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | 5962-8775401EA<br>CD54HC4053F3A       | Samples |
| CD54HCT4051F3A   | ACTIVE | CDIP         | J       | 16   | 1    | TBD                        | A42               | N / A for Pkg Type | -55 to 125   | 5962-9065401ME<br>A<br>CD54HCT4051F3A | Samples |
| CD74HC4051E      | ACTIVE | PDIP         | Ν       | 16   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU         | N / A for Pkg Type | -55 to 125   | CD74HC4051E                           | Samples |
| CD74HC4051EE4    | ACTIVE | PDIP         | N       | 16   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU         | N / A for Pkg Type | -55 to 125   | CD74HC4051E                           | Samples |
| CD74HC4051M      | ACTIVE | SOIC         | D       | 16   | 40   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HC4051M                               | Samples |
| CD74HC4051M96    | ACTIVE | SOIC         | D       | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU   CU SN | Level-1-260C-UNLIM | -55 to 125   | HC4051M                               | Samples |
| CD74HC4051M96E4  | ACTIVE | SOIC         | D       | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HC4051M                               | Samples |
| CD74HC4051M96G3  | ACTIVE | SOIC         | D       | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU SN             | Level-1-260C-UNLIM | -55 to 125   | HC4051M                               | Samples |
| CD74HC4051M96G4  | ACTIVE | SOIC         | D       | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HC4051M                               | Samples |



| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Sample |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|-------------------------|--------------------|--------------|-------------------------|--------|
| CD74HC4051ME4    | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4051M                 | Sample |
| CD74HC4051MG4    | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4051M                 | Sample |
| CD74HC4051MT     | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4051M                 | Sample |
| CD74HC4051NSR    | ACTIVE | SO           | NS                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4051M                 | Sample |
| CD74HC4051NSRE4  | ACTIVE | SO           | NS                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4051M                 | Sample |
| CD74HC4051PWR    | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU   CU SN       | Level-1-260C-UNLIM | -55 to 125   | HJ4051                  | Sample |
| CD74HC4051PWRG4  | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HJ4051                  | Sample |
| CD74HC4051PWT    | ACTIVE | TSSOP        | PW                 | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HJ4051                  | Sample |
| CD74HC4051PWTG4  | ACTIVE | TSSOP        | PW                 | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HJ4051                  | Sample |
| CD74HC4052E      | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | -55 to 125   | CD74HC4052E             | Sample |
| CD74HC4052EE4    | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | -55 to 125   | CD74HC4052E             | Sample |
| CD74HC4052M      | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Sample |
| CD74HC4052M96    | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU   CU SN       | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Sample |
| CD74HC4052M96E4  | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Sample |
| CD74HC4052M96G4  | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Sample |
| CD74HC4052ME4    | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Sample |
| CD74HC4052MG4    | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Sample |
| CD74HC4052MT     | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Sample |



| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp      | Op Temp (°C)                 | Device Marking<br>(4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|-------------------------|--------------------|------------------------------|-------------------------|---------|
| CD74HC4052MTG4   | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HC4052M                 | Samples |
| CD74HC4052NSR    | ACTIVE | SO           | NS                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HC4052M                 | Samples |
| CD74HC4052NSRG4  | ACTIVE | SO           | NS                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HC4052M                 | Samples |
| CD74HC4052PW     | ACTIVE | TSSOP        | PW                 | 16   | 90             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HJ4052                  | Samples |
| CD74HC4052PWG4   | ACTIVE | TSSOP        | PW                 | 16   | 90             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HJ4052                  | Samples |
| CD74HC4052PWR    | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU   CU SN       | Level-1-260C-UNLIM | -55 to 125                   | HJ4052                  | Samples |
| CD74HC4052PWRE4  | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HJ4052                  | Samples |
| CD74HC4052PWRG4  | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HJ4052                  | Samples |
| CD74HC4052PWT    | ACTIVE | TSSOP        | PW                 | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HJ4052                  | Samples |
| CD74HC4053E      | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | -55 to 125                   | CD74HC4053E             | Samples |
| CD74HC4053EE4    | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | -55 to 125                   | CD74HC4053E             | Samples |
| CD74HC4053M      | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HC4053M                 | Samples |
| CD74HC4053M96    | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU   CU SN       | Level-1-260C-UNLIM | -55 to 125                   | HC4053M                 | Samples |
| CD74HC4053M96E4  | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HC4053M                 | Samples |
| CD74HC4053M96G3  | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU SN                   | Level-1-260C-UNLIM | -55 to 125                   | HC4053M                 | Samples |
| CD74HC4053M96G4  | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HC4053M                 | Samples |
| CD74HC4053ME4    | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 50C-UNLIM -55 to 125 HC4053M |                         | Samples |
| CD74HC4053MG4    | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125                   | HC4053M                 | Samples |



| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|-------------------------|--------------------|--------------|-------------------------|---------|
| CD74HC4053MT     | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4053M                 | Samples |
| CD74HC4053NSR    | ACTIVE | SO           | NS                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HC4053M                 | Samples |
| CD74HC4053PW     | ACTIVE | TSSOP        | PW                 | 16   | 90             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HJ4053                  | Samples |
| CD74HC4053PWG4   | ACTIVE | TSSOP        | PW                 | 16   | 90             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HJ4053                  | Samples |
| CD74HC4053PWR    | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU   CU SN       | Level-1-260C-UNLIM | -55 to 125   | HJ4053                  | Samples |
| CD74HC4053PWRG4  | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HJ4053                  | Samples |
| CD74HC4053PWT    | ACTIVE | TSSOP        | PW                 | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HJ4053                  | Samples |
| CD74HCT4051E     | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | -55 to 125   | CD74HCT4051E            | Samples |
| CD74HCT4051M     | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051M96   | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051M96E4 | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051M96G4 | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051ME4   | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051MG4   | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051MT    | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051MTG4  | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4052E     | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | -55 to 125   | CD74HCT4052E            | Samples |
| CD74HCT4052EE4   | ACTIVE | PDIP         | N                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | -55 to 125   | CD74HCT4052E            | Samples |



| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish  | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Sample |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|-------------------|--------------------|--------------|-------------------------|--------|
| CD74HCT4052M     | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Sample |
| CD74HCT4052M96   | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Sample |
| CD74HCT4052M96G4 | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Sample |
| CD74HCT4052ME4   | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Sample |
| CD74HCT4052MG4   | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Sample |
| CD74HCT4052MT    | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Sample |
| CD74HCT4053E     | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU         | N / A for Pkg Type | -55 to 125   | CD74HCT4053E            | Sample |
| CD74HCT4053EE4   | ACTIVE | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU         | N / A for Pkg Type | -55 to 125   | CD74HCT4053E            | Sample |
| CD74HCT4053M     | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Sample |
| CD74HCT4053M96   | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Sample |
| CD74HCT4053M96E4 | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Sample |
| CD74HCT4053M96G4 | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Sample |
| CD74HCT4053ME4   | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Sample |
| CD74HCT4053MG4   | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Sample |
| CD74HCT4053MT    | ACTIVE | SOIC         | D                  | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Sample |
| CD74HCT4053PWR   | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU   CU SN | Level-1-260C-UNLIM | -55 to 125   | HK4053                  | Sample |
| CD74HCT4053PWRE4 | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HK4053                  | Sample |
| CD74HCT4053PWRG4 | ACTIVE | TSSOP        | PW                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU         | Level-1-260C-UNLIM | -55 to 125   | HK4053                  | Sample |



25-Oct-2016

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|----------------------------|-------------------------|--------------------|--------------|-------------------------|---------|
| CD74HCT4053PWT   | ACTIVE        | TSSOP        | PW                 | 16   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | HK4053                  | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

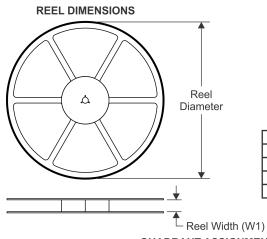
<sup>(6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

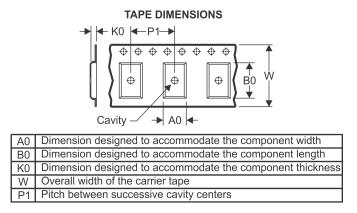
**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC4051, CD54HC4052, CD54HC4053, CD54HC4051, CD74HC4051, CD74HC4052, CD74HC4053, CD74HC4053, CD74HC4051, CD74HC4053, CD74HC405, CD74HC405, CD74HC4053, CD74HC405, CD74HC405, CD74HC4053, CD74HC




- Catalog: CD74HC4051, CD74HC4052, CD74HC4053, CD74HCT4051
- Automotive: CD74HC4051-Q1, CD74HCT4051-Q1, CD74HC4051-Q1, CD74HCT4051-Q1
- Enhanced Product: CD74HC4051-EP, CD74HC4051-EP
- Military: CD54HC4051, CD54HC4052, CD54HC4053, CD54HCT4051
- NOTE: Qualified Version Definitions:
  - Catalog TI's standard catalog product
  - Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
  - Enhanced Product Supports Defense, Aerospace and Medical Applications
  - Military QML certified for Military and Defense Applications


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

## TAPE AND REEL INFORMATION

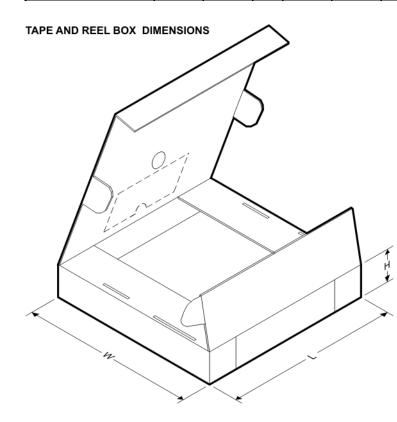




### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



| Device          | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CD74HC4051M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.8                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4051M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4051M96G3 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.8                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4051M96G4 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4051PWR   | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4051PWR   | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4051PWRG4 | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4051PWT   | TSSOP           | PW                 | 16   | 250  | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4052M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.8                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4052M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4052M96G4 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4052NSR   | SO              | NS                 | 16   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD74HC4052PWR   | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4052PWR   | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4052PWRG4 | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4052PWT   | TSSOP           | PW                 | 16   | 250  | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4053M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.8                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4053M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |


# PACKAGE MATERIALS INFORMATION



www.ti.com

17-Aug-2018

| Device           | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CD74HC4053M96G3  | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.8                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4053M96G4  | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4053PWR    | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4053PWR    | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4053PWRG4  | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4053PWT    | TSSOP           | PW                 | 16   | 250  | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HCT4051M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4052M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4053M96   | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4053PWR   | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HCT4053PWR   | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HCT4053PWRG4 | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HCT4053PWT   | TSSOP           | PW                 | 16   | 250  | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |



\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HC4051M96   | SOIC         | D               | 16   | 2500 | 364.0       | 364.0      | 27.0        |
| CD74HC4051M96   | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HC4051M96G3 | SOIC         | D               | 16   | 2500 | 364.0       | 364.0      | 27.0        |
| CD74HC4051M96G4 | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |

# PACKAGE MATERIALS INFORMATION



www.ti.com

17-Aug-2018

| Device           | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HC4051PWR    | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HC4051PWR    | TSSOP        | PW              | 16   | 2000 | 364.0       | 364.0      | 27.0        |
| CD74HC4051PWRG4  | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HC4051PWT    | TSSOP        | PW              | 16   | 250  | 367.0       | 367.0      | 35.0        |
| CD74HC4052M96    | SOIC         | D               | 16   | 2500 | 364.0       | 364.0      | 27.0        |
| CD74HC4052M96    | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HC4052M96G4  | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HC4052NSR    | SO           | NS              | 16   | 2000 | 367.0       | 367.0      | 38.0        |
| CD74HC4052PWR    | TSSOP        | PW              | 16   | 2000 | 364.0       | 364.0      | 27.0        |
| CD74HC4052PWR    | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HC4052PWRG4  | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HC4052PWT    | TSSOP        | PW              | 16   | 250  | 367.0       | 367.0      | 35.0        |
| CD74HC4053M96    | SOIC         | D               | 16   | 2500 | 364.0       | 364.0      | 27.0        |
| CD74HC4053M96    | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HC4053M96G3  | SOIC         | D               | 16   | 2500 | 364.0       | 364.0      | 27.0        |
| CD74HC4053M96G4  | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HC4053PWR    | TSSOP        | PW              | 16   | 2000 | 364.0       | 364.0      | 27.0        |
| CD74HC4053PWR    | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HC4053PWRG4  | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HC4053PWT    | TSSOP        | PW              | 16   | 250  | 367.0       | 367.0      | 35.0        |
| CD74HCT4051M96   | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HCT4052M96   | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HCT4053M96   | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HCT4053PWR   | TSSOP        | PW              | 16   | 2000 | 364.0       | 364.0      | 27.0        |
| CD74HCT4053PWR   | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HCT4053PWRG4 | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HCT4053PWT   | TSSOP        | PW              | 16   | 250  | 367.0       | 367.0      | 35.0        |

# N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.



D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



4211283-4/E 08/12

# D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
   E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



### MECHANICAL DATA

### PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

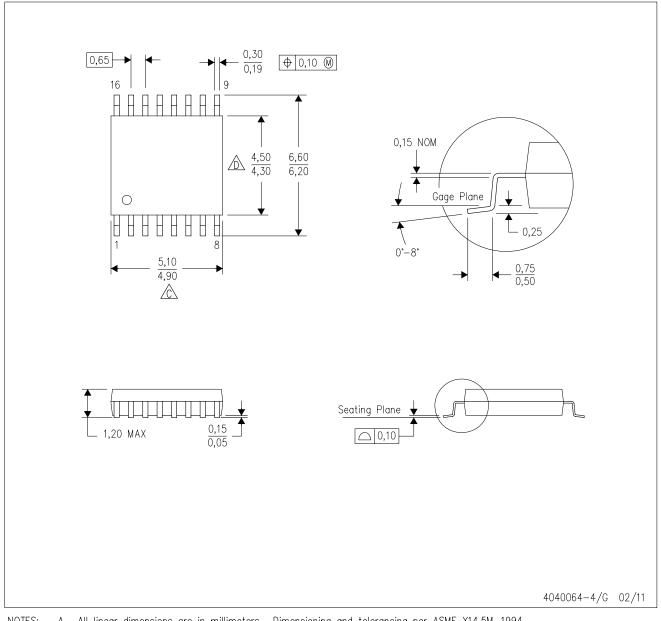
**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE




NOTES: A. All linear dimensions are in inches (millimeters).

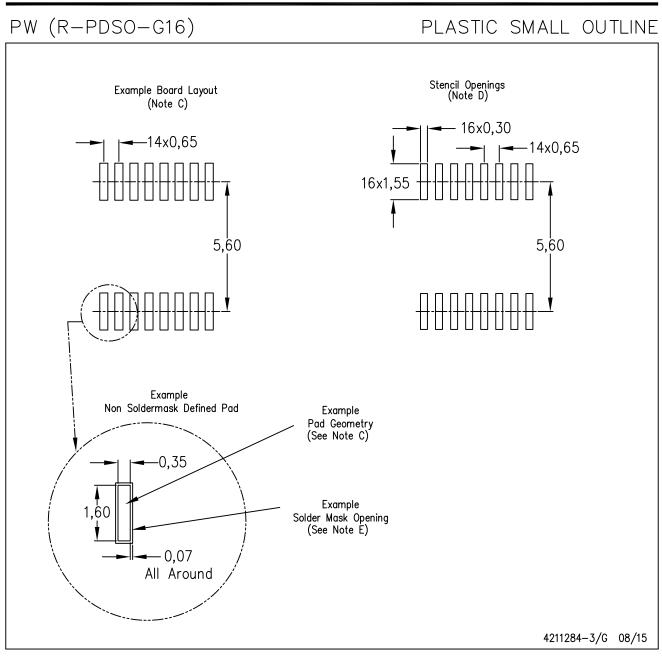
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



NOTES:


A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  $\beta$ . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153





NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated