LM139, LM139A, LM239, LM239A, LM339, LM339A, LM2901, LM2901V QUAD DIFFERENTIAL COMPARATORS

FEATURES

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage:
- Max Rating . . . 2 V to 36 V
- Tested to 30 V . . . Non-V Devices
- Tested to 32 V ... V-Suffix Devices
- Low Supply-Current Drain Independent of Supply Voltage . . . 0.8 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current . . . 3 nA Typ (LM139)
- Low Input Offset Voltage . . . 2 mV Typ
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ± 36 V
- Low Output Saturation Voltage
- Output Compatible With TTL, MOS, and CMOS

DESCRIPTION/ORDERING INFORMATION

These devices consist of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies also is possible, as long as the difference between the two supplies is 2 V to 36 V , and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

The LM139 and LM139A are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LM239 and LM239A are characterized for operation from $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LM339 and LM339A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM2901 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TA	V_{10} max AT $25^{\circ} \mathrm{C}$	MAX V cc	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5 mV	30 V	PDIP - N	Tube of 25	LM339N	LM339N
			SOIC - D	Tube of 50	LM339D	LM339
				Reel of 2500	LM339DR	
			SOP - NS	Reel of 2000	LM339NSR	LM339
			SSOP - DB	Reel of 2000	LM339DBR	LM339
			TSSOP - PW	Tube of 90	LM339PW	L339
				Reel of 2000	LM339PWR	
	2 mV	30 V	PDIP - N	Tube of 25	LM339AN	LM339AN
			SOIC - D	Tube of 50	LM339AD	LM339A
				Reel of 2500	LM339ADR	
			SOP - NS	Reel of 2000	LM339ANSR	LM339A
			SSOP - DB	Reel of 2000	LM339ADBR	L339A
			TSSOP - PW	Tube of 90	LM339APW	L339A
				Reel of 2000	LM339APWR	
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	5 mV	30 V	PDIP - N	Tube of 25	LM239N	LM239N
			SOIC - D	Tube of 50	LM239D	LM239
				Reel of 2500	LM239DR	
			TSSOP - PW	Tube of 90	LM239PW	L239
				Reel of 2000	LM239PWR	
	2 mV	30 V	SOIC - D	Tube of 50	LM239AD	LM239A
				Reel of 2500	LM239ADR	
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	7 mV	30 V	PDIP - N	Tube of 25	LM2901N	LM2901N
			SOIC - D	Tube of 50	LM2901D	LM2901
				Reel of 2500	LM2901DR	
			SOP - NS	Reel of 2000	LM2901NSR	LM2901
			TSSOP - PW	Tube of 90	LM2901PW	L2901
				Reel of 2000	LM2901PWR	
	7 mV	32 V	SOIC - D	Reel of 2500	LM2901VQDR	L2901V
			TSSOP - PW	Reel of 2000	LM2901VQPWR	L2901V
	2 mV	32 V	SOIC - D	Reel of 2500	LM2901AVQDR	L2901AV
			TSSOP - PW	Reel of 2000	LM2901AVQPWR	L2901AV
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	5 mV	30 V	CFP - W	Tube of 25	LM139W	LM139W
			CDIP - J	Tube of 25	LM139J	LM139J
			LCCC - FK	Tube of 55	LM139FK	LM139FK
			SOIC - D	Tube of 50	LM139D	LM139D
				Reel of 2500	LM139DR	
	2 mV	30 V	CFP - W	Tube of 25	LM139AW	LM139AW
			CDIP - J	Tube of 25	LM139AJ	LM139AJ
			LCCC - FK	Tube of 55	LM139AFK	LM139AFK
			SOIC - D	Tube of 50	LM139AD	LM139AD
				Reel of 2500	LM139ADR	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SYMBOL (EACH COMPARATOR)

SCHEMATIC (EACH COMPARATOR)

All current values shown are nominal. QUAD DIFFERENTIAL COMPARATORS

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage ${ }^{(2)}$			36	V
	Differential input voltage ${ }^{(3)}$			± 36	V
V_{1}	Input voltage range (either input)		-0.3	36	V
V_{O}	Output voltage			36	V
10	Output current			20	mA
Duration of output short circuit to ground ${ }^{(4)}$			Unlimited		
θ_{JA}	Package thermal impedance ${ }^{(5)(6)}$	D package		86	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DB package		96	
		N package		80	
		NS package		76	
		PW package		113	
$\theta_{\text {Jc }}$	Package thermal impedance ${ }^{(7)(8)}$	FK package		5.61	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		J package		15.05	
		W package		14.65	
T_{J}	Operating virtual junction temperature			150	${ }^{\circ} \mathrm{C}$
	Case temperature for 60 s	FK package		260	${ }^{\circ} \mathrm{C}$
	Lead temperature 1,6 mm (1/16 in) from case for 60 s	J package		300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to network ground.
(3) Differential voltages are at $\mathrm{IN}+$ with respect to IN -.
(4) Short circuits from outputs to $V_{C C}$ can cause excessive heating and eventual destruction.
(5) Maximum power dissipation is a function of $T_{J}(\max), \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.
(6) The package thermal impedance is calculated in accordance with JESD 51-7.
(7) Maximum power dissipation is a function of $T_{J}(\max), \theta_{\mathrm{JC}}$, and T_{C}. The maximum allowable power dissipation at any allowable case temperature is $P_{D}=\left(T_{J}(\max)-T_{C}\right) / \theta_{J C}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.
(8) The package thermal impedance is calculated in accordance with MIL-STD-883.

LM139, LM139A, LM239, LM239A, LM339, LM339A, LM2901, LM2901V
INSTRUMENTS
www.ti.com

Electrical Characteristics

at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{(1)}$		$\mathrm{T}_{\mathrm{A}}{ }^{(2)}$	LM139			LM139A			UNIT		
		MIN	TYP		MAX	MIN	TYP	MAX					
V_{10}	Input offset voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { to } 30 \mathrm{~V}, \\ & \mathrm{~V}_{1 C}=\mathrm{V}_{1 C R} \mathrm{~min}, \\ & \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V} \end{aligned}$		$25^{\circ} \mathrm{C}$		2	5		1	2	mV
		Full range					9			4			
I_{10}	Input offset current	$\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}$		$25^{\circ} \mathrm{C}$		3	25		3	25	nA		
				Full range			100			100			
$I_{\text {IB }}$	Input bias current	$\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}$		$25^{\circ} \mathrm{C}$		-25	-100		-25	-100	nA		
				Full range			-300			-300			
$V_{\text {ICR }}$	Common-mode input-voltage range			$25^{\circ} \mathrm{C}$	$\begin{array}{r} 0 \text { to } \\ \mathrm{V}_{\mathrm{CC}}-1.5 \\ \hline \end{array}$			$\begin{array}{r} 0 \text { to } \\ \mathrm{V}_{\mathrm{CC}}-1.5 \\ \hline \end{array}$			V		
				Full range	$\begin{array}{r} 0 \text { to } \\ \mathrm{V}_{\mathrm{CC}}-2 \end{array}$			$\begin{array}{r} 0 \text { to } \\ \mathrm{V}_{\mathrm{CC}}-2 \end{array}$					
$A_{V D}$	Large-signal differential-voltage amplification	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}= \pm 7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{aligned}$		$25^{\circ} \mathrm{C}$	200			50	200		V/mV		
IOH	High-level output current	$\mathrm{V}_{\mathrm{ID}}=1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.1			0.1		nA		
			$\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}$	Full range			1			1	$\mu \mathrm{A}$		
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{ID}}=-1 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$		$25^{\circ} \mathrm{C}$		150	400		150	400	mV		
				Full range	700			700					
loL	Low-level output current	$\mathrm{V}_{\text {ID }}=-1 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	6	16		6	16		mA		
I_{Cc}	Supply current (four comparators)	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$,	No load	$25^{\circ} \mathrm{C}$		0.8	2		0.8	2	mA		

(1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
(2) Full range (MIN to MAX) for LM139 and LM139A is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		LM139 LM139A	UNIT
			TYP	
Response time	R_{L} connected to 5 V through $5.1 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}^{(1)(2)}$	100-mV input step with 5-mV overdrive	1.3	$\mu \mathrm{s}$
		TTL-level input step	0.3	

(1) C_{L} includes probe and jig capacitance.
(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V .

Electrical Characteristics

at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted)

(1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
(2) Full range (MIN to MAX) for LM239/LM239A is $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and for $\mathrm{LM} 339 / \mathrm{LM} 339 \mathrm{~A}$ is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		$\begin{gathered} \text { LM239 } \\ \text { LM239A } \\ \text { LM339 } \\ \text { LM339A } \end{gathered}$	UNIT
			TYP	
Response time	R_{L} connected to 5 V through $5.1 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}^{(1)(2)}$	100-mV input step with 5-mV overdrive	1.3	$\mu \mathrm{S}$
		TTL-level input step	0.3	

(1) C_{L} includes probe and jig capacitance.
(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V .

LM139, LM139A, LM239, LM239A, LM339, LM339A, LM2901, LM2901V
www.ti.com

Electrical Characteristics

at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted)

(1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
(2) Full range (MIN to MAX) for LM2901 is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
(3) $\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}=30 \mathrm{~V}$ for non- V devices, and 32 V for V -suffix devices

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		LM2901	UNIT
			TYP	
Response time	R_{L} connected to 5 V through $5.1 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}^{(1)(2)}$	100-mV input step with $5-\mathrm{mV}$ overdrive	1.3	$\mu \mathrm{s}$
		TTL-level input step	0.3	

(1) C_{L} includes probe and jig capacitance.
(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V .

TYPICAL CHARACTERISTICS

output saturation voltage

TYPICAL CHARACTERISTICS (continued)

RESPONSE TIME FOR VARIOUS OVERDRIVES NEGATIVE TRANSITION

RESPONSE TIME FOR VARIOUS OVERDRIVES POSITIVE TRANSITION

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-7700801VCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
5962-87739012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-8773901CA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
5962-8773901DA	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
77008012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
7700801CA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
7700801DA	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/11201BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139AD	ACTIVE	SOIC	D	14	50	TBD	CU NIPDAU	Level-3-245C-168 HR
LM139ADR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
LM139AFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
LM139AJ	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
LM139AJB	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
LM139AN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
LM139AW	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N/ A for Pkg Type
LM139AWB	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N/ A for Pkg Type
LM139D	ACTIVE	SOIC	D	14	50	TBD	CU NIPDAU	Level-1-220C-UNLIM
LM139DR	ACTIVE	SOIC	D	14	2500	TBD	CU NIPDAU	Level-1-220C-UNLIM
LM139FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
LM139FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
LM139J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
LM139JB	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
LM139N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
LM139W	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139WB	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N/ A for Pkg Type
LM239AD	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
LM239ADE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239ADR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239ADRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239AN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
LM239D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239DE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239DG4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239DR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
LM239DRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
LM239DRG4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM239NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM239PW	ACTIVE	TSSOP	PW	14	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239PWE4	ACTIVE	TSSOP	PW	14	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM239PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
LM239PWRE4	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901AVQDR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
LM2901AVQPWR	ACTIVE	TSSOP	PW	14	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM
LM2901D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901DE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901DG4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901DR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901DRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901DRG4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM2901NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM2901NSR	ACTIVE	SO	NS	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
LM2901NSRE4	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901PW	ACTIVE	TSSOP	PW	14	90	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWG4	ACTIVE	TSSOP	PW	14	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
LM2901PWR	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWRE4	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWRG4	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM2901QD	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI

INSTRUMENTS
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins LM2901QN Qty	OBSOLETE	PDIP	N	14		TBD

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
LM339DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
LM339N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM339NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM339NSLE	OBSOLETE	SO	NS	14		TBD	Call TI	Call TI
LM339NSR	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM339NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
LM339PW	ACTIVE	TSSOP	PW	14	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM339PWE4	ACTIVE	TSSOP	PW	14	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM339PWG4	ACTIVE	TSSOP	PW	14	90	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM339PWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
LM339PWR	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM339PWRE4	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM339PWRG4	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM339Y	OBSOLETE			0		TBD	Call TI	Call TI

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^0]Copyright © 2006, Texas Instruments Incorporated

[^0]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

