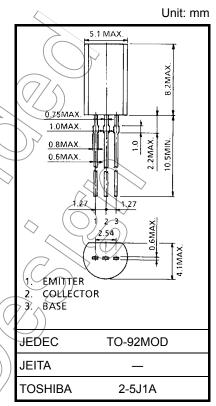
TOSHIBA

TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process)

2SA1680

Power Amplifier Applications Power Switching Applications

• Low collector-emitter saturation voltage: V_{CE} (sat) = -0.5 V (max)


$$I_{\rm C} = -1 \, {\rm A}$$

(1

- High collector power dissipation: P_C = 900 mW (Ta = 25 °C)
- High-speed switching: t_{stg} = 300 ns (typ.)
- Complementary to 2SC4408.

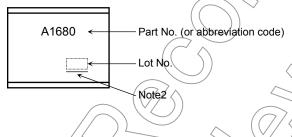
Absolute Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Collector-base voltage	V _{CBO}	-60	\checkmark
Collector-emitter voltage	V _{CEO}	-50	√ v
Emitter-base voltage	V _{EBO}		V
Collector current	IC	~2 ~	A
Base current	Ι _Β	-0.2	< < A
Collector power dissipation	Pc	900	mW
Junction temperature	Ţį	150	°C
Storage temperature range		-55 to 150	°C

Weight: 0.36 g (typ.)

Note1: Using continuously under heavy loads (e.g. the application of high

temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating

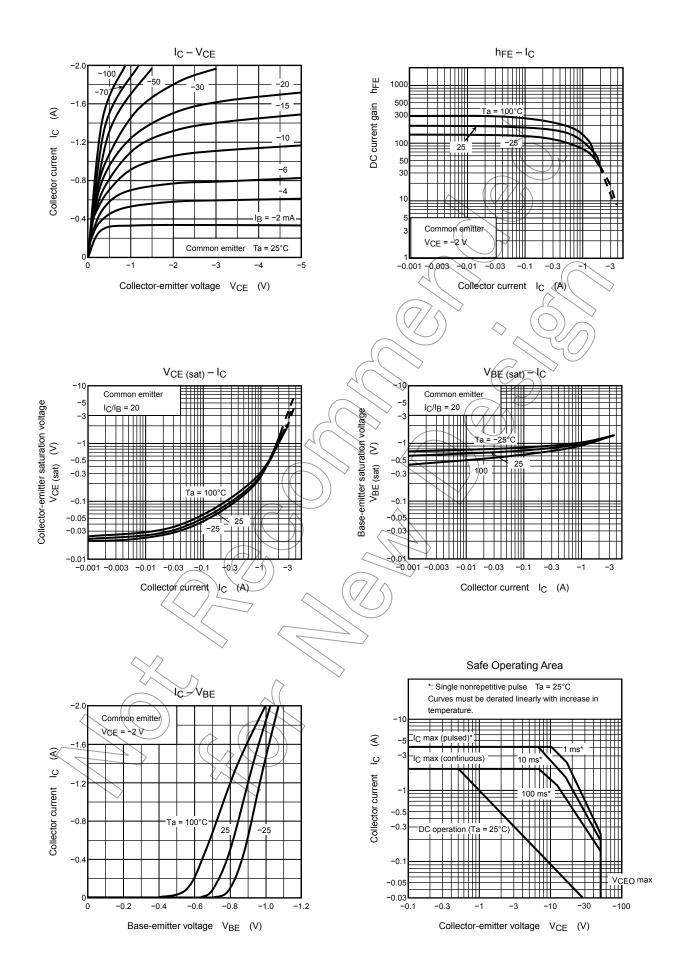

temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Electrical Characteristics (Ta = 25°C)

Chara	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit		
Collector cut-off of	current	I _{CBO}	V _{CB} = -60 V, I _E = 0	_	—	-1.0	μA		
Emitter cut-off cu	rrent	I _{EBO}	$V_{EB} = -6 V, I_C = 0$		_	-1.0	μA		
Collector-emitter	breakdown voltage	V (BR) CEO	I _C = -10 mA, I _B = 0	-50	_	_	V		
DC current gain		h _{FE (1)}	$V_{CE} = -2 V, I_C = -100 mA$	120	-	400			
		h _{FE (2)}	V _{CE} = -2 V, I _C = -1.5 A	40	-7(
Collector-emitter	saturation voltage	V _{CE (sat)}	I _C = -1 A, I _B = -0.05 A	2	_	-0.5	V		
Base-emitter satu	ration voltage	V _{BE (sat)}	I _C = -1 A, I _B = -0.05 A	\bigcirc	_	-1.2	V		
Transition freque	ncy	f _T	$V_{CE} = -2 V, I_C = -100 mA$		100	_	MHz		
Collector output of	capacitance	C _{ob}	V _{CB} = -10 V, I _E = 0, f = 1 MHz	_	23	_	pF		
Switching time	Turn-on time	t _{on}	20 µs Input	_	0.1	\checkmark			
	Storage time	t _{stg}			0.3) –	μs		
	Fall time	t _f	$V_{CC} = -30 V$ $I_{B1} = 0.05 \text{ A}, I_{B2} = 0.05 \text{ A}$ duty-cycle $\leq 1\%$	$\langle n \rangle$	0.1	_			

Marking



Note2: A line under a Lot No/identifies the indication of product Labels. Not underlined: [[Pb]]/INCLUDES > MCV Underlined: [[G]]/RoHS COMPATIBLE or [[G]]/RoHS [[Pb]]

Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. The RoHS is the Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

TOSHIBA

