**Vishay Semiconductors** 

# High Performance Schottky Rectifier, 19 A



www.vishay.com

| PRIMARY CHARACTERISTICS          |                  |  |  |  |  |
|----------------------------------|------------------|--|--|--|--|
| I <sub>F(AV)</sub>               | 19 A             |  |  |  |  |
| V <sub>R</sub>                   | 15 V             |  |  |  |  |
| V <sub>F</sub> at I <sub>F</sub> | 0.32 V           |  |  |  |  |
| I <sub>RM</sub> max.             | 522 mA at 100 °C |  |  |  |  |
| T <sub>J</sub> max.              | 125 °C           |  |  |  |  |
| E <sub>AS</sub>                  | 6.75 mJ          |  |  |  |  |
| Package                          | 2L TO-220AC      |  |  |  |  |
| Circuit configuration            | Single           |  |  |  |  |

#### **FEATURES**

- 125 °C T<sub>J</sub> operation (V<sub>B</sub> < 5 V)</li>
- Optimized for OR-ing applications
- Ultralow forward voltage drop
- High frequency operation
- · Guard ring for enhanced ruggedness and long term reliability
- · High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Designed and gualified according to JEDEC<sup>®</sup>-JESD 47
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

#### DESCRIPTION

The VS-19TQ015... Schottky rectifier has been optimized for ultralow forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

| MAJOR RATINGS AND CHARACTERISTICS |                                             |             |    |  |  |  |
|-----------------------------------|---------------------------------------------|-------------|----|--|--|--|
| SYMBOL                            | CHARACTERISTICS VALUES UNIT                 |             |    |  |  |  |
| I <sub>F(AV)</sub>                | Rectangular waveform                        | 19          | А  |  |  |  |
| V <sub>RRM</sub>                  |                                             | 15          | V  |  |  |  |
| I <sub>FSM</sub>                  | $t_p = 5 \ \mu s \ sine$                    | 700         | А  |  |  |  |
| V <sub>F</sub>                    | 19 A <sub>pk</sub> , T <sub>J</sub> = 75 °C | 0.32        | V  |  |  |  |
| TJ                                | Range                                       | -55 to +125 | °C |  |  |  |

| VOLTAGE RATINGS                      |                  |               |       |  |  |
|--------------------------------------|------------------|---------------|-------|--|--|
| PARAMETER                            | SYMBOL           | VS-19TQ015-M3 | UNITS |  |  |
| Maximum DC reverse voltage           | V <sub>R</sub>   | 15            | V     |  |  |
| Maximum working peak reverse voltage | V <sub>RWM</sub> | 15            | v     |  |  |

| ABSOLUTE MAXIMUM RATINGS                               |                    |                                                                   |                                                   |        |       |  |  |
|--------------------------------------------------------|--------------------|-------------------------------------------------------------------|---------------------------------------------------|--------|-------|--|--|
| PARAMETER                                              | SYMBOL             | TEST COND                                                         | ITIONS                                            | VALUES | UNITS |  |  |
| Maximum average forward current<br>See fig. 5          | I <sub>F(AV)</sub> | 50 % duty cycle at $T_{C}$ = 80 °C,                               | 19                                                |        |       |  |  |
| Maximum peak one cycle<br>non-repetitive surge current | <b>1</b>           | 5 µs sine or 3 µs rect. pulse                                     | Following any rated load condition and with rated | 700    | A     |  |  |
| See fig. 7                                             | IFSM               | 10 ms sine or 6 ms rect. pulse                                    | V <sub>RRM</sub> applied                          | 330    |       |  |  |
| Non-repetitive avalanche energy                        | E <sub>AS</sub>    | T <sub>J</sub> = 25 °C, I <sub>AS</sub> = 1.50 A, L = 6 mH        |                                                   | 6.75   | mJ    |  |  |
| Repetitive avalanche current                           | I <sub>AR</sub>    | Current decaying linearly to zer Frequency limited by $T_J$ maxim |                                                   | 1.50   | А     |  |  |

Revision: 11-Oct-17

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

1





HALOGEN

FREE

UNITS

٧

mΑ

pF

nΗ

V/µs



www.vishay.com

## Vishay Semiconductors

10 000

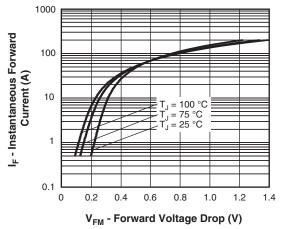
| ELECTRICAL SPECIFICATIONS       |                                |                                                                |                                 |        |  |  |  |
|---------------------------------|--------------------------------|----------------------------------------------------------------|---------------------------------|--------|--|--|--|
| PARAMETER                       | SYMBOL                         | TEST CO                                                        | NDITIONS                        | VALUES |  |  |  |
|                                 | V <sub>FM</sub> <sup>(1)</sup> | 19 A                                                           | T.I = 25 °C                     | 0.36   |  |  |  |
| Maximum forward voltage drop    |                                | 38 A                                                           | 1j=25 C                         | 0.46   |  |  |  |
| See fig. 1                      |                                | 19 A                                                           | T <sub>.1</sub> = 75 °C         | 0.32   |  |  |  |
|                                 |                                | 38 A                                                           | 1j=75 C                         | 0.43   |  |  |  |
|                                 | I <sub>RM</sub> <sup>(1)</sup> | T <sub>J</sub> = 100 °C, V <sub>R</sub> = 12 V                 |                                 | 465    |  |  |  |
| Maximum reverse leakage current |                                | $T_{\rm J} = 100 \ ^{\circ}{\rm C}, \ V_{\rm R} = 5 \ {\rm V}$ |                                 | 285    |  |  |  |
| See fig. 2                      |                                | T <sub>J</sub> = 25 °C                                         | $V_{\rm B}$ = Rated $V_{\rm B}$ | 10.5   |  |  |  |
|                                 |                                | T <sub>J</sub> = 100 °C                                        | $v_{\rm R} = naleu v_{\rm R}$   | 522    |  |  |  |
| Maximum junction capacitance    | CT                             | $V_R = 5 V_{DC}$ (test signal rang                             | 2000                            |        |  |  |  |
| Typical series inductance       | L <sub>S</sub>                 | Measured lead to lead 5 mm from package body 8.0               |                                 |        |  |  |  |

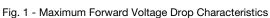
Rated V<sub>R</sub>

dV/dt

#### Note

 $^{(1)}\,$  Pulse width < 300  $\mu s,$  duty cycle < 2 %


Maximum voltage rate of change


| THERMAL - MECHANICAL SPECIFICATIONS          |            |                                                        |                            |            |            |  |
|----------------------------------------------|------------|--------------------------------------------------------|----------------------------|------------|------------|--|
| PARAMETER                                    |            | SYMBOL                                                 | TEST CONDITIONS            | VALUES     | UNITS      |  |
| Maximum junction tempera                     | ture range | TJ                                                     |                            | -55 to 125 | °C         |  |
| Maximum storage temperat                     | ture range | T <sub>Stg</sub>                                       |                            | -55 to 150 | °C         |  |
| Maximum thermal resistance, junction to case |            | R <sub>thJC</sub>                                      | DC operation<br>See fig. 4 | 1.50       | °C / M     |  |
| Typical thermal resistance, case to heatsink |            | R <sub>thCS</sub> Mounting surface, smooth and greased |                            | 0.50       | °C/W       |  |
| Approximate weight                           |            |                                                        |                            | 2          | g          |  |
|                                              |            |                                                        |                            | 0.07       | oz.        |  |
| Mounting torque                              | minimum    |                                                        |                            | 6 (5)      | kgf ⋅ cm   |  |
| Mounting torque -                            | maximum    |                                                        |                            | 12 (10)    | (lĎf · in) |  |
| Marking device Case style 2L TO-220AC 19     |            | 19TC                                                   | 015                        |            |            |  |



VS-19TQ015-M3

## **Vishay Semiconductors**





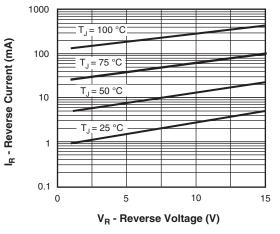



Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

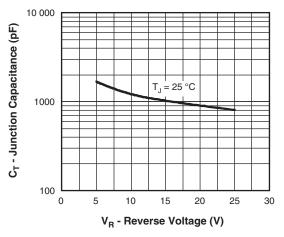



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

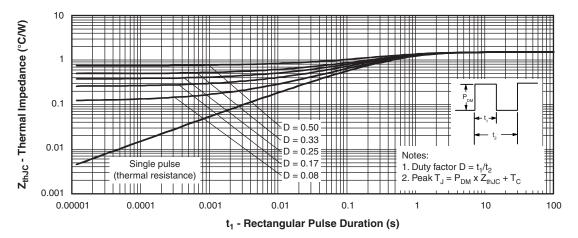
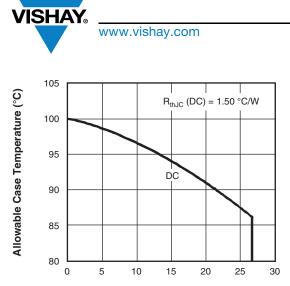




Fig. 4 - Maximum Thermal Impedance Z<sub>thJC</sub> Characteristics



## **Vishay Semiconductors**



I<sub>F(AV)</sub> - Average Forward Current (A)

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

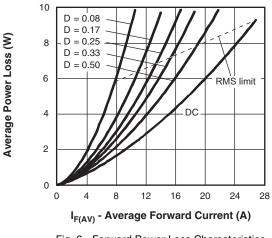
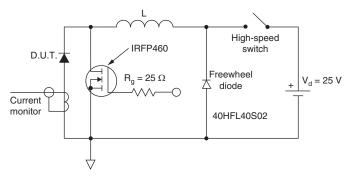
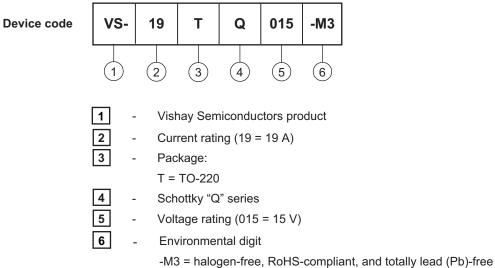



Fig. 6 - Forward Power Loss Characteristics



Fig. 7 - Maximum Non-Repetitive Surge Current







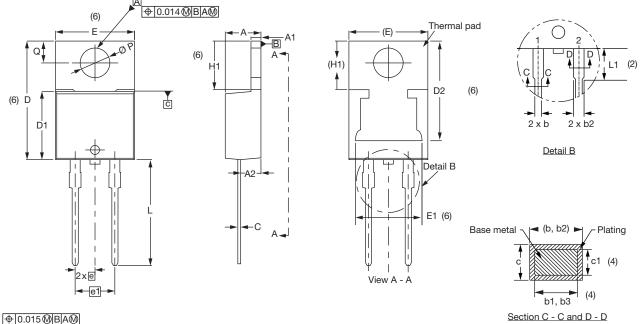
#### **ORDERING INFORMATION TABLE**

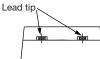


| ORDERING INFORMATION (Example) |                  |                        |                         |  |  |
|--------------------------------|------------------|------------------------|-------------------------|--|--|
| PREFERRED P/N                  | QUANTITY PER T/R | MINIMUM ORDER QUANTITY | PACKAGING DESCRIPTION   |  |  |
| VS-19TQ015-M3                  | 50               | 1000                   | Antistatic plastic tube |  |  |

| LINKS TO RELATED DOCUMENTS                 |                          |  |  |  |
|--------------------------------------------|--------------------------|--|--|--|
| Dimensions <u>www.vishay.com/doc?96156</u> |                          |  |  |  |
| Part marking information                   | www.vishay.com/doc?95391 |  |  |  |
| SPICE model                                | www.vishay.com/doc?96005 |  |  |  |




# 'ISHA www.vishay.com




**Vishay Semiconductors** 

# 2L TO-220AC

#### **DIMENSIONS** in millimeters and inches





| SYMBOL | MILLIN | IETERS | INC          | HES   | NOTES |  |
|--------|--------|--------|--------------|-------|-------|--|
| STMBOL | MIN.   | MAX.   | K. MIN. MAX. |       | NOTES |  |
| А      | 4.25   | 4.65   | 0.167        | 0.183 |       |  |
| A1     | 1.14   | 1.40   | 0.045        | 0.055 |       |  |
| A2     | 2.50   | 2.92   | 0.098        | 0.115 |       |  |
| b      | 0.69   | 1.01   | 0.027        | 0.040 |       |  |
| b1     | 0.38   | 0.97   | 0.015        | 0.038 | 4     |  |
| b2     | 1.20   | 1.73   | 0.047        | 0.068 |       |  |
| b3     | 1.14   | 1.73   | 0.045        | 0.068 | 4     |  |
| С      | 0.36   | 0.61   | 0.014        | 0.024 |       |  |
| c1     | 0.36   | 0.56   | 0.014        | 0.022 | 4     |  |
| D      | 14.85  | 15.35  | 0.585        | 0.604 | 3     |  |
| D1     | 8.38   | 9.02   | 0.330        | 0.355 |       |  |

| Conforms to JEDEC® | outline | TO-220AC |
|--------------------|---------|----------|
|--------------------|---------|----------|

| SYMBOL | MILLIN | MILLIMETERS |       | INCHES |       |  |
|--------|--------|-------------|-------|--------|-------|--|
| STMBOL | MIN.   | MAX.        | MIN.  | MAX.   | NOTES |  |
| D2     | 11.68  | 13.30       | 0.460 | 0.524  | 6, 7  |  |
| E      | 10.11  | 10.51       | 0.398 | 0.414  | 3, 6  |  |
| E1     | 6.86   | 8.89        | 0.270 | 0.350  | 6     |  |
| е      | 2.41   | 2.67        | 0.095 | 0.105  |       |  |
| e1     | 4.88   | 5.28        | 0.192 | 0.208  |       |  |
| H1     | 6.09   | 6.48        | 0.240 | 0.255  | 6     |  |
| L      | 13.52  | 14.02       | 0.532 | 0.552  |       |  |
| L1     | 3.32   | 3.82        | 0.131 | 0.150  | 2     |  |
| ØР     | 3.54   | 3.91        | 0.139 | 0.154  |       |  |
| Q      | 2.60   | 3.00        | 0.102 | 0.118  |       |  |
|        |        |             |       |        |       |  |

#### Notes

 $^{(1)}\,$  Dimensioning and tolerancing as per ASME Y14.5M-1994

<sup>(2)</sup> Lead dimension and finish uncontrolled in L1

<sup>(4)</sup> Dimension b1, b3, and c1 apply to base metal only

(5) Controlling dimensions: inches

- <sup>(6)</sup> Thermal pad contour optional within dimensions E, H1, D2, and E1
- <sup>(7)</sup> Outline conforms to JEDEC<sup>®</sup> TO-220, except D2

Revision: 13-Jun-2019

1

<sup>&</sup>lt;sup>(3)</sup> Dimension D, D1, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body



Vishay

# Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.