

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Standard Diodes, 100 A

PRODUCT SUMMARY					
I _{F(AV)}	100 A				
Туре	Modules - Diode, High Voltage				

MECHANICAL DESCRIPTION

The ADD-A-PAK generation VII, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

· High voltage

- Low thermal resistance
- Compliant to RoHS Directive 2002/95/EC
- · Designed and qualified for industrial level

BENEFITS

- · Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- · High surge capability
- Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	112 °C	100				
I _{F(RMS)}		157	Α			
1	50 Hz	2020	A			
I _{FSM}	60 Hz	2115				
l ² t	50 Hz	20.41	kA ² s			
rı	60 Hz	18.63	KA-S			
l²√t		204.1	kA²√s			
V _{RRM}	Range	400 to 1600	V			
T _J T _{Stg}		- 40 to 150	°C			

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Standard Diodes, 100 A

ELECTRICAL SPECIFICATIONS

VOLTAGE RA	VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 150 °C mA				
	04	400	500					
	06	600	700					
	08	800	900					
VSK.91	10	1000	1100	10				
	12	1200	1300					
	14	1400	1500					
	16	1600	1700					

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current at case temperature	I _{F(AV)}	180° condu	ction, half sine	wave	100	A °C
Maximum RMS forward current		DO -+ 00 90	\		112	°C
Maximum RMS forward current	I _{F(RMS)}		case temperat	ure	157	
		t = 10 ms	No voltage		2000	
Maximum peak, one-cycle forward,	I	t = 8.3 ms	reapplied		2115	Α
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		1700	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	1780	
	2 †	t = 10 ms	No voltage	intitial $T_J = T_J$ maximum $\begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\$	20.41	kA ² s
Marrian un 121 fau fraise		t = 8.3 ms	reapplied		18.63	
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RRM}		14.44	
		t = 8.3 ms	reapplied		13.18	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms t	t = 0.1 ms to 10 ms, no voltage reapplied		204.1	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π	$x I_{F(AV)} < I < \pi x$	$I_{F(AV)}$, $T_J = T_J$ maximum	0.76	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$		0.89	\ \ \ \	
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum		2.4	mΩ	
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$		2.05	1115.2	
Maximum forward voltage drop	V_{FM}	$I_{FM} = \pi \times I_{F(x)}$	AV , $T_J = 25 \circ C$,	t _p = 400 μs square wave	1.55	V

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum peak reverse leakage current	I _{RRM}	T _J = 150 °C	10	mA		
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V		

ADD-A-PAK Generation VII Power Modules Standard Diodes, 100 A Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Junction and storage temperature range	T _J , T _{Stg}		- 40 to 150	°C		
Maximum internal thermal resistance, junction to case per leg	R _{thJC}	DC operation	0.22	°C/W		
Typical thermal resistance, case to heatsink per module	R _{thCS}	Mounting surface flat, smooth and greased	0.1	C/VV		
to heatsink		A mounting compound is recommended and the	4	Nimo		
Mounting torque ± 10 % busbar		torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	3	Nm		
Approximate weight			75	g		
Approximate weight			2.7	oz.		
Case style		JEDEC	ADD-A-PAK Ger	n. VII (TO-240AA)		

△R CONDUCTION PER JUNCTION											
DEVICES	SINE HALF WAVE CONDUCTION						CTANGUL	AR WAVE C	CONDUCTION	ON	UNITS
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.91	0.057	0.068	0.087	0.12	0.177	0.045	0.073	0.093	0.123	0.178	°C/W

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Standard Diodes, 100 A

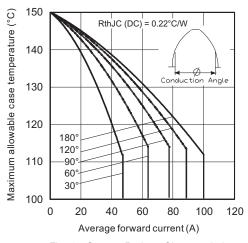


Fig. 1 - Current Ratings Characteristics

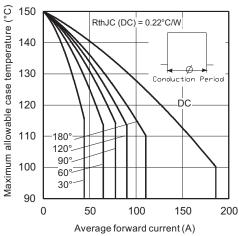


Fig. 2 - Current Ratings Characteristics

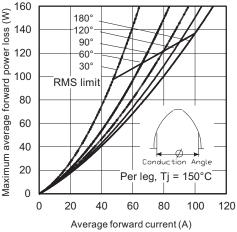


Fig. 3 - Forward Power Loss Characteristics

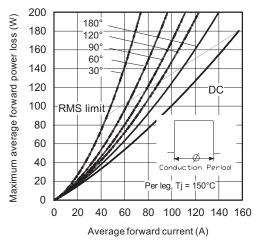


Fig. 4 - On-State Power Loss Characteristics

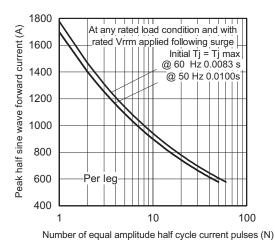


Fig. 5 - Maximum Non-Repetitive Surge Current

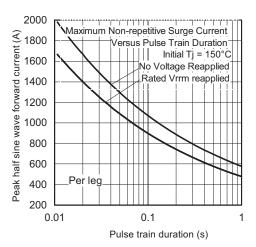


Fig. 6 - Maximum Non-Repetitive Surge Current

ADD-A-PAK Generation VII Power Modules Standard Diodes, 100 A Vishay Semiconductors

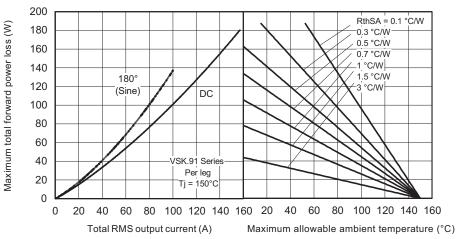


Fig. 7 - Forward Power Loss Characteristics

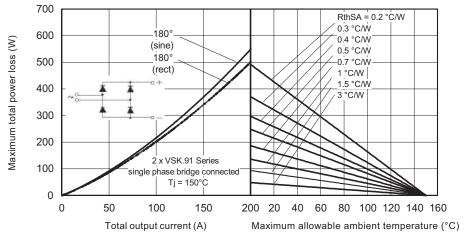


Fig. 8 - Forward Power Loss Characteristics

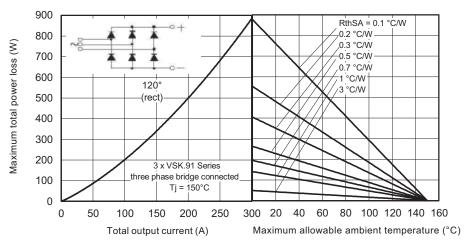


Fig. 9 - Forward Power Loss Characteristics

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Standard Diodes, 100 A

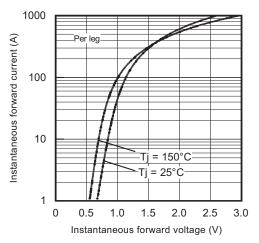


Fig. 10 - Forward Voltage Characteristics

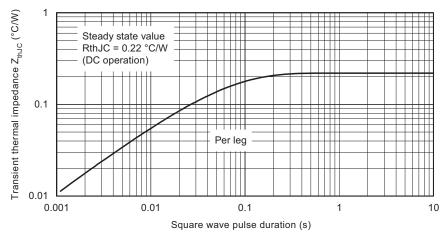


Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

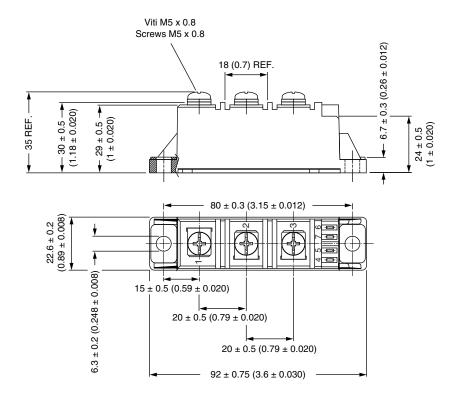
- 1 Module type
- Circuit configuration (see Circuit Configuration table)
- Current code (100 A)
- Voltage code (see Voltage Ratings table)

Note

• To order the optional hardware go to www.vishay.com/doc?95172

ADD-A-PAK Generation VII Power Modules Standard Diodes, 100 A

Vishay Semiconductors


CIRCUIT CONFIGURATION					
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Two diodes doubler circuit	D	VSKD (1) ~ (2) ~ (3)			
Two diodes common cathodes	С	VSKC (1) 0 (2) (3)			
Two diodes common anodes	J	VSKJ (1) (2) - (3)			
Single diode	E	VSKE (2) 0			

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95369			

Vishay Semiconductors

ADD-A-PAK Generation VII - Diode

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 11-Mar-11