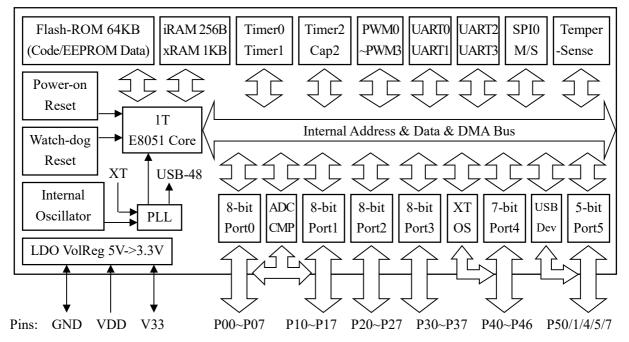
Datasheet Version: 1E http://wch.cn

1. Overview

The CH547 is an enhanced E8051 MCU compatible with MCS51 instruction set. 79% of its instructions are single-byte single-cycle instructions, and the average instruction speed is 8 to 15 times faster than that of the standard MCS51.

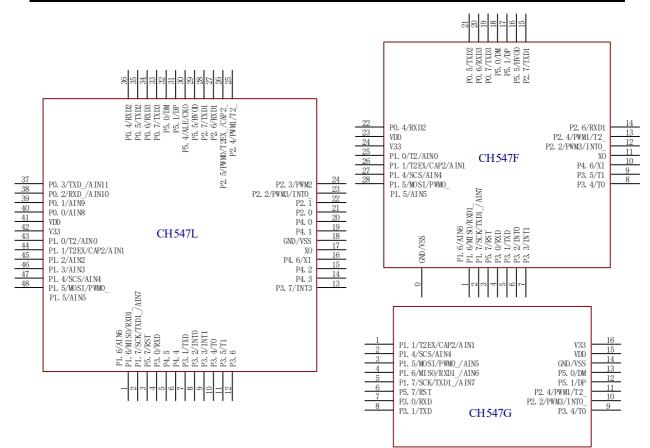

The CH547 supports up to 48MHz system clock, built-in 64KB Flash-ROM, 256B on-chip iRAM, 2KB on-chip xRAM, and xRAM supports DMA mode.

The CH547 has a built-in 12-bit ADC converter, capacitive touch key detection module, temperature sensor (TS), built-in clock, 3 timers and 1-channel signal capture, 4 channels of PWM, 4 UARTs, SPI and other functional modules. It supports full speed and low speed USB-Device modes.

The CH546 is a simplified version of CH547, with 32KB Flash-ROM, UART0 only, 8 channels of ADC and touch key detection, 2 channels pf PWM. Others of CH546 are the same as that of CH547, please directly refer to CH547 datasheet and technical resources.

Product No.	Flash-ROM Boot ROM	xRAM iRAM		USB device	TS	Timer	Signal capture	8-bit PWM	UART	SPI master SPI slave	12-bit ADC	Capacitive Touch key
CH547	60KB+3KB	1024	1KB	Full/low	Support	3	1 channel	4 channels	4	2 in 1	12 channels	12 channels
CH546	32KB+3KB	+256	IKD	speed	Support	5	1 chamier	2 channels	1	2 111 1	8 channels	8 channels

Here is CH547 internal block diagram, for reference only.



2. Features

- Core: Enhanced E8051 core, compatible with MCS51 instruction set, 79% of its instructions are single-byte single-cycle instructions, and the average instruction speed is 8 to 15 times faster than that of the standard MCS51, with special XRAM data fast copy instruction, and dual DPTR pointer.
- ROM: Non-volatile 64KB Flash-ROM, which supports 10K writing cycles, it can be all used for program memory. Or it can be divided into 3 pieces, 60KB for program memory, 1KB for data-flash EEPROM and 3KB for BootLoader/ISP code.
- EEPROM: 1KB data memory EEPROM, it is divided into 16 independent blocks, and supports byte read, byte write, block write (1 to 64 bytes), and block erase (64 bytes). It generally supports 100K (not guaranteed) writing cycles in a typical environment.
- OTP: 32B One time Programmable data memory (OTP). It supports dual word (4 bytes) read, single byte write.
- RAM: 256B on-chip iRAM, for fast data cache and stack pointer. 1KB on-chip xRAM, for mass data or DMA operation.
- USB: Built-in USB device controller and USB transceiver, supports USB 2.0 full speed (12Mbps) and low speed (1.5Mbps). Maximum support 64-byte packet, built-in FIFO, and support DMA mode.
- Timer: 3 timers. T0, T1 and T2 are standard MCS51 timers.
- Capture: T2 supports 1-channel signal capture.
- PWM: 4 PWM outputs, support standard 8-bit data or fast 6-bit data.
- UART: 4 UARTs. UART0 is a standard MCS51 UART. UART1, UART2 and UART3 have built-in communication baud rate setting register.
- SPI: The SPI controller supports Master/Slave mode, with built-in FIFO, clock frequency can be approximate to Fsys/2. It supports simplex multiplexing of serial data input and output.
- ADC: 12-channel 12-bit A/D converter, it supports voltage comparison of multiple combinations.
- Touch-key: 12-channel capacitive touch-key detection. Each ADC channel supports touch-key detection.
- TS: Built-in simple temperature sensor.
- GPIO: Supports up to 44 GPIO pins (including XI, RST and USB signal pins), support MCS51 compatible quasi-bidirectional mode, newly add high-impedance input, push-pull output, open-drain output modes, one of these pins supports 12V high-voltage open-drain output.
- Interrupt: Supports 16 interrupt sources, including 6 interrupts compatible with the standard MCS51 (INT0, T0, INT1, T1, UART0, T2), and 10 extended interrupts (SPI0, INT3, USB, ADC/UART2, UART1, PWMX/UART3, GPIO, WDOG). GPIO interrupt can be selected from 7 pins.
- Watch-Dog: 8-bit presettable watchdog timer WDOG, support timer interrupt.
- Reset: Supports 5 reset sources, built-in power on reset and multi-stage adjustable power supply low voltage detection reset module, supports software reset and watchdog overflow reset, configurable external input reset.
- Clock: Built-in 24MHz clock, support external crystal oscillator through alternate GPIO pins, built-in PLL for USB clock and Fsys.
- Power: Built-in 5V to 3.3V LDO for USB and other modules; it supports 5V, 3.3V, even 6V and 2.8V voltage input.
- Sleep: Supports low power Sleep mode, supports USB, UART0, UART1, SPI0, comparator and some GPIOs wake-up.
- Unique ID for identification.

3. Package

Package	Body size		Lead pitch		Description	Part No.
LQFP-48	7*7mm		0.5mm	19.7mil	Standard LQFP 48-pin patch	CH547L
QFN28_4X4	4*4mm		0.4mm	15.7mil	Quad no-lead 28-pin	CH547F
SOP-16	3.9mm	150mil	1.27mm	50mil	Standard 16-pin patch	CH547G
LQFP-48	7*7mm		0.5mm	19.7mil	Standard LQFP 48-pin patch	CH546L
SOP-16	3.9mm	150mil	1.27mm	50mil	Standard 16-pin patch	CH546G

4. Pin definitions

SOP16	Pin No. QFN28	LQFP48	Pin Name	Alternate (Left preferential)	Description
15	23	41	VDD	VCC	I/O power input and external power input of internal USB power regulator, requires an external 0.1uF decoupling capacitor.
16	24	42	V33	V3	Internal voltage regulator output and internal USB power input, When supply voltage is less than 3.6V, connect VDD to input the external power supply.

- - 38 PO.2 RXD_/AIN10 signal/touch-key input. - - 37 PO.3 TXD_/AIN11 RXD_, TXD_, T						When supply voltage is greater than 3.6V, an
- - 40 P0.0 AIN8 AIN8 AIN8 AIN8 - AIN11 4-channel ADC analo - - 38 P0.2 RXD_/AIN10 RXD_, TXD_, TXD_, TXD_, TXD_ pin mapping. - - 37 P0.3 TXD_/AIN10 RXD_, TXD_, TXD_, TXD_, TXD_, TXD_, TXD_, SCD_, S						external 0.1uF decoupling capacitor is required.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	0	18	GND	VSS	Ground
- - 38 P0.2 RXD_/AIN10 signal/touch-key input. - - 37 P0.3 TXD_/AIN11 RXD_, TXD_: RXD, TXD pin mapping. - 22 36 P0.4 RXD2 wutput. - 21 35 P0.5 TXD_ RXD2, TXD2: UART3 serial data input, serial dat output. - 20 34 P0.6 RXD3 wutput. - 20 34 P1.0 T2/AIN0 AIN0 ~ AIN7: 8-channel ADC analo signal/touch-key input. - 25 43 P1.2 AIN2 T2: Timer/counter2 external count input/clock output rutput. - - 45 P1.2 AIN3 CAP2: Timer/counter2 reload/capture input. 2 27 47 P1.4 SCS/AIN4 SCS. SCS. MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN6 MISO is master output/slave output, SCK is serie clock. 5 2 2 P1.7 SCK/TXD1_/AIN7 PWM0_PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM0/TZE_/CAP2 T2EX/CAP2_i T2EX/CAP2 pin mapping.	-	-	40	P0.0	AIN8	
- - 38 P0.2 PXD_/AIN10 RXD_/TXD_: RXD_, TXD pin mapping. - 21 35 P0.4 RXD_2 RXD_2, TXD2: UART2 serial data input, serial data output. - 21 35 P0.6 RXD3 RXD3, TXD3: UART3 serial data input, serial data output. - 20 34 P0.6 RXD3 output. - 20 34 P0.6 RXD3 output. - 20 34 P0.6 RXD3 output. - 25 43 P1.0 T2/AIN0 AIN0 AIN7: 8-channel ADC analo output. - 46 P1.3 AIN3 T2EX: Timer/counter2 catternal count input/clock output - - 46 P1.3 AIN3 CAP2: Timer/counter2 catternal count input/clock output 2 27 47 P1.4 SCS/AIN4 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1/AIN7 MISO is master output/slave input - 21 P2.0 PXM0/PWM3: 4-ch	-	-	39	P0.1	AIN9	5
- - 37 P0.3 FXD_/AIN11 RXD_/AIN11 - 22 36 P0.4 RXD2 - 21 35 P0.6 RXD3 - 20 34 P0.6 RXD3 - 19 33 P0.7 TXD3 - 25 43 P1.0 T2/AIN0 AIN0 ~ AIN7: 8-channel ADC analo utput. - 25 43 P1.0 T2/AIN0 AIN0 ~ AIN7: 8-channel ADC analo utput. - 25 43 P1.0 T2/AIN0 AIN0 ~ AIN7: 8-channel ADC analo utput. - 46 P1.3 AIN3 T2EX: Timer/counter2 eload/capture input. 2 27 47 P1.4 SCS/AIN4 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN6 HISO is master input/slave output, SCK is serie clock. 5 2 2 P1.7 SCK/TXD1_/AIN7 PWM0_PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM0/TIZE T2.:T2 pin mapping. - -	-	-	38	P0.2	RXD_/AIN10	
- 22 36 P0.4 RXD2 output. - 21 35 P0.5 TXD2 RXD3, TXD3: UART3 serial data input, serial data output. - 20 34 P0.6 RXD3 output. - 19 33 P0.7 TXD3 analo - 25 43 P1.0 T2/AIN0 AIN0 ~ AIN7: 8-channel ADC analo 1 26 44 P1.1 T2EX/CAP2/AIN1 signal/touch-key input. - 45 P1.2 AIN2 T2: Timer/counter2 external count input/clock output - 46 P1.3 AIN3 T2EX: Timer/counter2 capture input. 2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 capture input. 3 28 48 P1.5 MOS/PWM0_/AIN5 SCS, MOSI, MISO, SCK: SP10 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN7 MK50 is master input/slave output, SCK is serial clock. 7 2 P2.1 P2.0 PXM0	-	-	37	P0.3	TXD_/AIN11	
- 21 35 P0.5 TXD2 RXD3, TXD3: UART3 serial data input, serial data output. - 19 33 P0.7 TXD3 output. - 19 33 P0.7 TXD3 output. - 25 43 P1.0 T2/AIN0 AIN0 ~ AIN7: 8-channel ADC analo signal/touch-key input. - - 45 P1.2 AIN2 T2: Timer/counter2 external count input/clock output - - 46 P1.3 AIN3 T2EX: Timer/counter2 capture input. 2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 capture input. 3 28 48 P1.5 MOSI/PWM0_/AIN5 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN6 MISO is master input/slave output/slave input 5 2 2 P1.7 SCK/TXD1_/AIN6 MISO is master input/slave output/slave input 10 12 23 P2.0 PWM0_RXD1_TXD1_ INT0_: INT0 in mapping. - - 24 P2.3 PWM2 T2_: T2 pin mapping. 11	-	22	36	P0.4	RXD2	
- 20 34 P0.6 [RXD3 output. - 19 33 P0.7 [TXD3 output. - 25 43 P1.0 [72/AIN0 AIN0 ~ AIN7: 8-channel ADC analo signal/touch-key input. - 26 44 P1.1 [T2EX/CAP2/AIN1] signal/touch-key input. - - 45 P1.2 AIN2 T2: Timer/counter2 external count input/clock output 2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 external count input/clock output 3 28 48 P1.5 MOSI/PWM0_/AIN5 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN6 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 5 2 2 P1.7 SCK/TXD1_/AIN7 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 6 8 P2.2 P2.0 PWM0_RXD1_TXD1_: PWM0/RXD1/TXD1 pi mapping. - - 21 P2.0 PWM0_RXD2_T2X_/CAP2 - - 22 P2.1 INT0_: INT0 in mapping. 11 13 25 P2.4 PWM1/T2	-	21	35	P0.5	TXD2	1
- 19 33 P0.7 TXD3 - 25 43 P1.0 T2/AIN0 AIN0 ~ AIN7: 8-channel ADC analo 1 26 44 P1.1 T2EX/CAP2/AIN1 signal/touch-key input. - - 45 P1.2 AIN3 T2EX: Timer/counter2 external count input/clock output - - 46 P1.3 AIN3 T2EX: Timer/counter2 reload/capture input. 2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 capture input. 3 28 48 P1.5 MOSI/PWM0_/AIN5 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN6 MISO is master input/slave output, SCK is seria clock. 5 2 2 P1.7 SCK/TXD1_/AIN7 PWM0_RXD1_TXD1_: TXD1_: PWM0/RXD1/TXD1 pi mapping. - - 21 P2.0 P2.0 PWM0_RXD1_TXD2_: T2 pi mapping. - - 22 P2.1 PWM0/MO_RXD1_TZ_: T2 pi mapping. T2 : T2 pi mapping.	-	20	34	P0.6	RXD3	_
1 26 44 P1.1 T2EX/CAP2/AIN1 signal/touch-key input. - - 45 P1.2 AIN2 T2: Timer/counter2 external count input/clock output 2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 capture input. 3 28 48 P1.5 MOSL/PWM0_/AIN5 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN6 MISO is master input/slave output, SCK is serial clock. 5 2 2 P1.7 SCK/TXD1_/AIN7 PWM0_RXD1_, TXD1_: PWM0/RXD1/TXD1 pi mapping. - - 21 P2.0 P2.1 PWM0-PWM3; 4-channel PWM outputs. 10 12 23 P2.2 PWM1/T2	-	19	33	P0.7	TXD3	oupu.
- 45 P1.2 AIN2 T2: Timer/counter2 external count input/clock output - 46 P1.3 AIN3 T2EX: Timer/counter2 external count input/clock output 2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 external count input/clock output 3 28 48 P1.5 MOSI/PWM0_/AIN5 CAP2: Timer/counter2 capture input. 4 1 1 P1.6 MISO/RXD1_/AIN6 CAP2: Timer/counter2 external count input/clock output 5 2 2 P1.7 SCK/TXD1_/AIN7 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 6 P2.0 - - 21 P2.0 - - 21 P2.0 - - 22 P2.1 PWM0-PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM3/INT0_ INT0_: INT0 pin mapping. - - 24 P2.3 PWM2 T2: X_CAP2_: T2EX/CAP2 pin mapping. -11 13 25 P2.4 PWM0/T2EX_/CAP2. T2EX_/CAP2.: T2EX/CAP2 pin mapping.	-	25	43	P1.0	T2/AIN0	AIN0 ~ AIN7: 8-channel ADC analog
- 46 P1.3 AIN3 T2EX: Timer/counter2 reload/capture input. 2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 capture input. 3 28 48 P1.5 MOSI/PWM0_/AIN5 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS 4 1 1 P1.6 MISO/RXD1_/AIN6 chip select input, MOSI is master output/slave input 5 2 2 P1.7 SCK/TXD1_/AIN7 MISO is master input/slave output, SCK is serie clock. 5 2 2 P1.7 SCK/TXD1_/AIN7 PWM0-PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM1/T2	1	26	44	P1.1	T2EX/CAP2/AIN1	signal/touch-key input.
2 27 47 P1.4 SCS/AIN4 CAP2: Timer/counter2 capture input. 3 28 48 P1.5 MOSI/PWM0_/AIN5 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS chip select input, MOSI is master output/slave input 4 1 1 P1.6 MISO/RXD1_/AIN6 SCS, MOSI, MISO, SCK: SPI0 interfaces. SCS chip select input, MOSI is master output/slave input 5 2 2 P1.7 SCK/TXD1_/AIN7 MISO is master input/slave output, SCK is serial clock. 7 - 21 P2.0 PWM0_RXD1_, TXD1_: PWM0/RXD1/TXD1 pi mapping. - - 22 P2.1 PWM0/PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM3/INT0_ T1.7 11 13 25 P2.4 PWM1/T2_ T2_: T2 pin mapping. - - 26 P2.5 PWM0/T2EX_/CAP2 RXD1, TXD1: UART1 serial data input, serial dat - 14 27 P2.6 RXD RXD, TXD: UART0 serial data input, serial dat - 15 28 P2.7 TXD1 T0, T1: Timer0, timer1 external interru	-	-	45	P1.2	AIN2	T2: Timer/counter2 external count input/clock output.
2 27 17 111 DSDAMT 3 28 48 P1.5 MOSI/PWM0_/AIN5 SCS, MOSI, MISO, SCE: SP10 interfaces. SCS chip select input, MOSI is master output/slave input/Slave inpu	-	-	46	P1.3	AIN3	1 1
5 20 100 11.0 MISO/IT WING/ITH 10 4 1 1 P1.6 MISO/RXD1/AIN6 chip select input, MOSI is master output/slave input/ MISO is master input/slave output, SCK is serie clock. PWM0_RXD1_, TXD1_: PWM0/RXD1/TXD1 pi mapping. 5 2 2 P1.7 SCK/TXD1_/AIN7 clock. PWM0_RXD1_, TXD1_: PWM0/RXD1/TXD1 pi mapping. - - 21 P2.0 PWM0_PWM3: 4-channel PWM outputs. - - 24 P2.3 PWM2 T2_: T2 pin mapping. - - 24 P2.3 PWM2 T2_: T2 pin mapping. - - 26 P2.5 PWM0/T2EX_/CAP2 RXD1, TXD1: UART1 serial data input, serial data input, serial data - 14 27 P2.6 RXD1 output. - 15 28 P2.7 TXD1 7 4 4 P3.0 RXD 8 5 7 P3.1 TXD - 15 28 P2.7 TXD1 - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 - <t< td=""><td>2</td><td>27</td><td>47</td><td>P1.4</td><td>SCS/AIN4</td><td></td></t<>	2	27	47	P1.4	SCS/AIN4	
4 1 1 11.0 MISO KKD1_AINO 5 2 2 P1.7 SCK/TXD1_/AIN7 MISO is master input/slave output, SCK is serial clock. 5 2 2 P1.7 SCK/TXD1_/AIN7 MISO is master input/slave output, SCK is serial clock. 6 - 22 P2.1 PWM0-PWM3: 4-channel PWM outputs. INT0_: INT0 pin mapping. 10 12 23 P2.2 PWM3/INT0	3	28	48	P1.5	MOSI/PWM0_/AIN5	
5 2 2 P1.7 SCK/TXD1_/AIN7 clock. PWM0_, RXD1_, TXD1_: PWM0/RXD1/TXD1 pi mapping. - - 21 P2.0 PWM0-PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM1/T0_ INT0_: INT0 pin mapping. - - 24 P2.3 PWM2 T2_: T2 pin mapping. - - 26 P2.5 PWM0/T2EX_/CAP2 RXD1, TXD1 vertal data input, serial data output. - 14 27 P2.6 RXD1 output. - 15 28 P2.7 TXD1 7 4 4 P3.0 RXD 8 5 7 P3.1 TXD - 12 P3.6 INT0 output. - 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 INT3 - - 12 P3.6 INT3 - - 13 P3.7 INT3 - - 19 P4.1 INT3	4	1	1	P1.6	MISO/RXD1_/AIN6	
5 2 2 P1.7 SCK/TXD1_/AIN7 PWM0_, RXD1_, TXD1_: PWM0/RXD1/TXD1 pi mapping. - - 21 P2.0 PWM0_PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM1/T0_ PWM0-PWM3: 4-channel PWM outputs. - - 24 P2.3 PWM2 T2_: T2 pin mapping. - - 24 P2.3 PWM1/T2 T2_: T2 pin mapping. - - 26 P2.5 PWM0/TXCAP2 RXD1 - 14 27 P2.6 RXD1 autoptic. - 15 28 P2.7 TXD1 RXD, TXD: UART1 serial data input, serial data output. - 15 28 P2.7 TXD1 RXD, TXD: UART0 serial data input, serial data output. - 15 28 P3.1 TXD RXD, TXD: UART0 serial data input, serial data output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 - 7 9 P3.4 T0 input. T0, T1: Timer0, timer1 external input. - 12<						
- - 21 P2.0 - - 22 P2.1 10 12 23 P2.2 PWM3/INT0_ - - 24 P2.3 PWM2 T2_: T2 pin mapping. 11 13 25 P2.4 PWM1/T2_ T2EX_/CAP2_: T2EX/CAP2 pin mapping. - - 26 P2.5 PWM0/T2EX_/CAP2_ RXD1, TXD1: UART1 serial data input, serial data - 14 27 P2.6 RXD RXD 7 4 4 P3.0 RXD 8 5 7 P3.1 TXD - 7 9 P3.3 INT1 9 8 10 P3.4 T0 - 9 11 P3.5 T1 - - 12 P3.6 INT3 - - 12 P3.6 INT3 - - 19 P4.1 Y1 - - 19 P4.1 Y1 - - 14 P4.3 P4.3 </td <td>5</td> <td>2</td> <td>2</td> <td>P1.7</td> <td>SCK/TXD1 /AIN7</td> <td></td>	5	2	2	P1.7	SCK/TXD1 /AIN7	
- 21 P2.0 - 22 P2.1 PWM0-PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM3/INT0_ INT0_: INT0 pin mapping. - - 24 P2.3 PWM2 T2_: T2 pin mapping. - - 24 P2.3 PWM2 T2_: T2 pin mapping. 11 13 25 P2.4 PWM1/T2_ T2_: T2 EX/CAP2_ in mapping. - - 26 P2.5 PWM0/T2EX_/CAP2_ RXD1, TXD1: UART1 serial data input, serial data output. - 14 27 P2.6 RXD1 output. - 15 28 P2.7 TXD1 RXD, TXD: UART0 serial data input, serial data output. - 15 28 P2.7 TXD RXD, TXD: UART0 serial data input, serial data output. - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 INT3: External interrupt3. - - 13 <					_	
- - 22 P2.1 PWM0~PWM3: 4-channel PWM outputs. 10 12 23 P2.2 PWM3/INT0_ INT0_: INT0 pin mapping. - - 24 P2.3 PWM2 T2_: T2 pin mapping. 11 13 25 P2.4 PWM1/T2_ T2_: T2 pin mapping. - - 26 P2.5 PWM0/T2EX_/CAP2_ RXD1, TXD1: UART1 serial data input, serial data - 14 27 P2.6 RXD1 output. - 15 28 P2.7 TXD1 7 4 4 P3.0 RXD 8 5 7 P3.1 TXD RXD, TXD: UART0 serial data input, serial data - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt 9 8 10 P3.4 T0 input. T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3 INT3: External interrupt3. - - 19 P4			21	D2 ()		mapping.
10 12 23 P2.2 PWM3/INT0_ INT0_: INT0 pin mapping. - - 24 P2.3 PWM2 T2_: T2 pin mapping. 11 13 25 P2.4 PWM1/T2_ T2_: T2 pin mapping. - - 26 P2.5 PWM0/T2EX_/CAP2 RXD1, TXD1: UART1 serial data input, serial data input, serial data output. - 14 27 P2.6 RXD1 RXD1 - 15 28 P2.7 TXD1 RXD, TXD: UART1 serial data input, serial data output. - 15 28 P2.7 TXD1 RXD, TXD: UART0 serial data input, serial data output. - 15 28 P3.2 INT0 output. - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 input. T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3 INT3: External interrupt3. - - 19 P4.1	-	-				DWA (0, DWA (2, 4, shows st DWA (, sectors))
- 24 P2.3 PWM2 T2_: T2 pin mapping. 11 13 25 P2.4 PWM1/T2_ T2_: T2 pin mapping. - - 26 P2.5 PWM0/T2EX_/CAP2_ RXD1, TXD1: UART1 serial data input, serial data - 14 27 P2.6 RXD1 RXD1, TXD1: UART1 serial data input, serial data - 14 27 P2.6 RXD1 output. - 15 28 P2.7 TXD1 7 4 4 P3.0 RXD 8 5 7 P3.1 TXD - 6 8 P3.2 INT0 - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 external interrupt1 9 8 10 P3.4 T0 - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 19 P4.1 Y1 - - 14 P4.3 Y1 -	- 10	- 12			PWM3/INT0	
11 13 25 P2.4 PWM1/T2_ T2EX/CAP2 : T2EX/CAP2 pin mapping. - 26 P2.5 PWM0/T2EX_/CAP2 RXD1 T2EX/CAP2 : T2EX/CAP2 pin mapping. - 14 27 P2.6 RXD1 RXD1: UART1 serial data input, serial data input, serial data output. - 15 28 P2.7 TXD1 TXD 7 4 4 P3.0 RXD RXD, TXD: UART0 serial data input, serial data output. 8 5 7 P3.1 TXD RXD, TXD: UART0 serial data input, serial data output. - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 input. T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3: External interrupt3. T3: External interrupt3. - - 19 P4.1 INT3: INT3: External crystal oscillator input, inverte - - 14 P4.3 INT4: INT4: Context Context <td></td> <td></td> <td></td> <td></td> <td>— —</td> <td></td>					— —	
- - 26 P2.5 PWM0/T2EX_/CAP2_ RXD1, TXD1: UART1 serial data input, serial data - 14 27 P2.6 RXD1 output. - 15 28 P2.7 TXD1 output. 7 4 4 P3.0 RXD RXD, TXD: UART0 serial data input, serial data 8 5 7 P3.1 TXD RXD, TXD: UART0 serial data input, serial data - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 19 P4.1 XI, XO: External crystal oscillator input, inverte - - 14 P4.3 output.						
- 14 27 P2.6 RXD1 output. - 15 28 P2.7 TXD1 output. 7 4 4 P3.0 RXD RXD 8 5 7 P3.1 TXD RXD, TXD: UART0 serial data input, serial data output. - 6 8 P3.2 INT0 INT0, INT1: External interrupt0, external interrupt0, external interrupt0, external input. 9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 19 P4.1 XI, XO: External crystal oscillator input, inverte - - 14 P4.3 Output.	-	-				
- 15 28 P2.7 TXD1 7 4 4 P3.0 RXD 8 5 7 P3.1 TXD RXD, TXD: UART0 serial data input, serial data output. - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 19 P4.1 XI, XO: External crystal oscillator input, inverte - - 14 P4.3 output.	-	14				
7 4 4 P3.0 RXD 8 5 7 P3.1 TXD RXD, TXD: UART0 serial data input, serial data output. - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 19 P4.1 XI, XO: External crystal oscillator input, inverter - - 14 P4.3 output.	-					
8 5 7 P3.1 TXD RXD, TXD: UART0 serial data input, serial data - 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 19 P4.1 XI, XO: External crystal oscillator input, inverte - - 14 P4.3 output.	7					
- 6 8 P3.2 INT0 output. - 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt0 9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - 9 11 P3.5 T1 INT3: External interrupt3. - - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 19 P4.1 YI, XO: External crystal oscillator input, inverte - - 14 P4.3 output.						RXD_TXD: UART0_serial_data_input_serial_data
- 7 9 P3.3 INT1 INT0, INT1: External interrupt0, external interrupt 9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3 INT3: External interrupt3. - - 13 P3.7 INT3 INT3: External crystal oscillator input, inverte - - 15 P4.2 XI, XO: External crystal oscillator input, inverte - - 14 P4.3 Output.						
9 8 10 P3.4 T0 input. - 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 T0, T1: Timer0, timer1 external input. - - 13 P3.7 INT3 - - 20 P4.0 P4.1 - - 15 P4.2 XI, XO: External crystal oscillator input, inverte output.	-					
- 9 11 P3.5 T1 T0, T1: Timer0, timer1 external input. - - 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 20 P4.0 INT3: External interrupt3. - - 19 P4.1 INT3: External crystal oscillator input, inverte output. - - 14 P4.3 Output.	9	8	10			
- 12 P3.6 INT3: External interrupt3. - - 13 P3.7 INT3 - - 20 P4.0 P4.1 - - 15 P4.2 XI, XO: External crystal oscillator input, inverte output.	-	9	11	P3.5	T1	-
- - 13 P3.7 INT3 - - 20 P4.0 P4.1 - - 15 P4.2 XI, XO: External crystal oscillator input, inverte output.	-	-	12			INT3: External interrupt3.
- 19 P4.1 - - 15 P4.2 - - 14 P4.3	-	-			INT3	
- 19 P4.1 - 15 P4.2 XI, XO: External crystal oscillator input, inverte output.	-	-				
- 15 P4.2 - - 14 P4.3 VI, XO: External crystal oscillator input, inverte output.	-	-				
14 P4.3 output.	-	-				XI, XO: External crystal oscillator input, inverted
	-	-				
	-	-	6	P4.4		
5 P4.5	-	-				

-	10	16	P4.6	XI	
-	11	17	XO		
13	18	32	P5.0	DM/UDM	DM, DP: D- and D+ signals of USB device.
12	17	31	P5.1	DP/UDP	The resistors are all built-in, and it is recommended that no external resistors be connected in series.
-	-	30	P5.4	ALE/CKO	ALE/CKO: Address latch signal output or clock
-	16	29	P5.5	HVOD	output. HVOD: Suppots 12V high voltage open-drain output.
6	3	3	P5.7	RST	External reset input, built-in pull-down resistor.

5. Special function register (SFR)

Abbreviations and descriptions in this datasheet:

Abbreviation	Description
RO	Software can only read these bits.
WO	Software can only write to this bit. The read value
	is invalid.
RW	Software can read and write to these bits.
Н	End with it to indicate a hexadecimal number
В	End with it to indicate a binary number

5.1 SFR introduction and Address Distribution

CH547 controls, manages the device, and sets the working mode with special function registers (SFR and xSFR).

SFRs use addresses from 80h to FFh of internal data memory, and can only be accessed by direct address instructions. Some addresses support bit addressing such as x0h and x8h, to avoid modifying the values of other bits when accessing a specific bit. Other registers with the addresses that are not the multiple of 8 can only be accessed by bytes.

Some SFRs can be written only in safe mode, and are read-only in unsafe mode, such as: GLOBAL_CFG, CLOCK_CFG, WAKE_CTRL, POWER_CFG.

Some SFRs have one or more names, such as: SPI0_CK_SE/SPI0_S_PRE, ROM_ADDR_L/ROM_DATA_LL, ROM_ADDR_H/ROM_DATA_LH, ROM_DATA_HL/ROM_DAT_BUF, ROM_DATA_HH/ROM_BUF_MOD.

Some addresses may correspond to multiple seperate SFRs, such as: SAFE_MOD/CHIP_ID, ROM CTRL/ROM STATUS.

CH547 contains all the standard registers of 8051, and adds some other device control registers. See the table below for the specific SFRs.

SFR	0, 8	1, 9	2, A	3, B	4, C	5, D	6, E	7, F
0xF8	SPI0_STAT	SPI0_DATA	SPI0_CTRL	SPI0_CK_SE SPI0_S_PRE	SPI0_SETUP		RESET_KEEP	WDOG_COUNT
0xF0	В	TKEY_CTRL	ADC_CTRL	ADC_CFG	ADC_DAT_L	ADC_DAT_H	ADC_CHAN	ADC_PIN
0xE8	IE_EX	IP_EX	UEP4_1_MOD	UEP2_3_MOD	UEP0_DMA_L	UEP0_DMA_H	UEP1_DMA_L	UEP1_DMA_H

Table 5.1 Table of special function registers

0xE0	ACC	USB_INT_EN	USB_CTRL	USB_DEV_AD	UEP2_DMA_L	UEP2_DMA_H	UEP3_DMA_L	UEP3_DMA_H
0xD8	USB_INT_FG	USB_INT_ST	USB_MIS_ST	USB_RX_LEN	UEP0_CTRL	UEP0_T_LEN	UEP4_CTRL	UEP4_T_LEN
0xD0	PSW	UDEV_CTRL	UEP1_CTRL	UEP1_T_LEN	UEP2_CTRL	UEP2_T_LEN	UEP3_CTRL	UEP3_T_LEN
0xC8	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2		
0xC0	P4		P4_MOD_OC	P4_DIR_PU	P0_MOD_OC	P0_DIR_PU		
0xB8	IP	CLOCK_CFG	POWER_CFG		SCON1	SBUF1	SBAUD1	SIF1
0xB0	P3	GLOBAL_CFG	GPIO_IE	INTX	SCON2	SBUF2	SBAUD2	SIF2
0xA8	IE	WAKE_CTRL	PIN_FUNC	Р5	SCON3	SBUF3	SBAUD3	SIF3
0xA0	Р2	SAFE_MOD CHIP_ID	XBUS_AUX	PWM_DATA3				
0x98	SCON	SBUF	PWM_DATA2	PWM_DATA1	PWM_DATA0	PWM_CTRL	PWM_CK_SE	PWM_CTRL2
0x90	P1	USB_C_CTRL	P1_MOD_OC	P1_DIR_PU	P2_MOD_OC	P2_DIR_PU	P3_MOD_OC	P3_DIR_PU
0x88	TCON	TMOD	TL0	TL1	TH0	TH1	ROM_DATA_HL ROM_DAT_BUF	ROM_DATA_HH ROM_BUF_MOD
0x80	PO	SP	DPL	DPH	ROM_ADDR_L ROM_DATA_LL	ROM_ADDR_H ROM_DATA_LH	ROM_CTRL ROM_STATUS	PCON

Notes : (1) Those in red text can be accessed by bits;

(2) The following table shows the corresponding description of different color boxes.

Register address
SPI0 register
ADC register
USB register
Timer/counter2 register
Port setting register
PWMX register
UART1/2/3 register
Timer/counter 0 and 1 register
Flash-ROM register

5.2 SFR classification and reset value

Table 5.2 Description and reset value of SFR and xSFR

Function	Name	Address	Description	Reset value	
	В	F0h	B register	0000 0000b	
	ACC	E0h	Accumulator	0000 0000b	
	PSW	D0h	Program status register	0000 0000b	
System setting			Global configuration register (CH547 Bootloader)	0110 0000b	
System setting registers	CLODAL CEC	D1L	Global configuration register (CH547 application)	0100 0000b	
	GLOBAL_CFG	B1h	Global configuration register (CH546 Bootloader)	0010 0000Ь	
			Global configuration register (CH546 application)	0000 0000Ь	

			CH547 chip ID (read only)	0100 0111b	
	CHIP_ID	Alh	CH547 chip ID (read only) CH546 chip ID (read only)	0100 01110 0100 0110b	
	SAFE MOD	Alh	Safe mode control register (read only)	0000 0000b	
	DPH	83h	Data pointer high	0000 0000b	
	DPL	82h	Data pointer low	0000 0000b	
	DPTR	82h	16-bit SFR consists of DPL and DPH	0000 00000	
	SP	81h	Stack pointer	0000 0111b	
	WDOG COUNT	FFh	Watchdog count register	0000 0000b	
Clock, sleep	RESET KEEP	FEh	Reset keep register (power on reset)	0000 0000b	
and power	POWER CFG	BAh	Power management configuration register	0000 0000b	
supply control	CLOCK CFG	B9h	System clock configuration register	1000 0011b	
registers	WAKE CTRL	A9h	Wake-up control register	0000 0000b	
105151015	PCON	87h	Power control register (power on reset)	0001 0000b	
	IP EX	E9h	Extend interrupt priority register	0001 0000b	
	IE EX	E9h	Extend interrupt enable register	0000 0000b	
Interrupt	GPIO IE	C7h	GPIO interrupt enable register	0000 0000b	
control	IP	B8h		0000 0000b	
registers	INTX		Interrupt priority register	-	
	INTA	B3h A8h	Extend external interrupt control register	0000 0000b 0000 0000b	
	IE	Aðn	Interrupt enable register	0000 00000	
	ROM_DATA_HH	8Fh	High byte of flash-ROM data register high	xxxx xxxxb	
			word (read only) Low byte of flash-ROM data register high		
	ROM_DATA_HL	8Eh	word (read only)	xxxx xxxxb	
			16-bit SFR consists of ROM DATA HL and	+	
	ROM_DATA_HI	8Eh	ROM DATA HH	xxxxh	
			Buffer mode register for flash-ROM		
	ROM_BUF_MOD	8Fh	erase/program operation	xxxx xxxxb	
			Data butter register for flash-ROM		
	ROM_DAT_BUF	8Eh	erase/program operation	xxxx xxxxb	
Flash-ROM	ROM STATUS	86h	flash-ROM status register (read only)	0000 0000b	
registers	ROM CTRL	86h	flash-ROM control register (write only)	0000 0000b	
8	ROM ADDR H	85h	flash-ROM address register high	xxxx xxxxb	
	ROM ADDR L	84h	flash-ROM address register low	xxxx xxxxb	
		0.111	16-bit SFR consists of ROM ADDR L and		
	ROM_ADDR	84h	ROM ADDR H	xxxxh	
			High byte of flash-ROM data register low		
	ROM_DATA_LH	85h	word (read only)	xxxx xxxxb	
			Low byte of flash-ROM data register low		
	ROM_DATA_LL	84h	word (read only)	xxxx xxxxb	
		<i>.</i> .	16-bit SFR consists of ROM DATA LL and		
	ROM_DATA_LO	84h	ROM DATA LH	xxxxh	
	XBUS AUX	A2h	XBUS auxiliary configuration register	0000 0000b	
Port setting				1	
registers	PIN FUNC	AAh	Pin function selection register	0000 0000b	

			register	
	P0_MOD_OC	C4h	Port0 output mode register	1111 1111b
	P0_MOD_OC	C4n		1111 11110
	P4_DIR_PU	C3h	Port4 direction control and pull-up enable register	1111 1111b
	P4_MOD_OC	C2h	Port4 output mode register	1111 1111b
	P3_DIR_PU	97h	Port3 direction control and pull-up enable register	1111 1111b
	P3 MOD OC	96h	Port3 output mode register	1111 1111b
	P2 DIR PU	95h	Port2 direction control and pull-up enable	1111 1111b
		0.41	register	
	P2_MOD_OC	94h	Port2 output mode register	1111 1111b
	P1_DIR_PU	93h	Port1 direction control and pull-up enable register	1111 1111b
	P1_MOD_OC	92h	Port1 output mode register	1111 1111b
	P5	ABh	Port5 input & output register	0010 0000b
	P4	C0h	Port4 input & output register	1111 1111b
	P3	B0h	Port3 input & output register	1111 1111b
	P2	A0h	Port2 input & output register	1111 1111b
	P1	90h	Port1 input & output register	1111 1111b
	P0	80h	Port0 input & output register	1111 1111b
	TH1	8Dh	Timer1 count register high	xxxx xxxxb
T : ((TH0	8Ch	Timer0 count register high	xxxx xxxxb
Timer/counter	TL1	8Bh	Timer1 count register low	xxxx xxxxb
0 and 1 registers	TL0	8Ah	Timer0 count register low	xxxx xxxxb
registers	TMOD	89h	Timer0/1 mode register	0000 0000b
	TCON	88h	Timer0/1 control register	0000 0000b
UART0	SBUF	99h	UART0 data register	xxxx xxxxb
registers	SCON	98h	UART0 control register	0000 0000b
	TH2	CDh	Timer2 count register high	0000 0000b
	TL2	CCh	Timer2 count register low	0000 0000b
	T2COUNT	CCh	16-bit SFR consists of TL2 and TH2	0000h
Timer/counter 2	RCAP2H	CBh	Count reload/capature 2 data register high	0000 0000b
registers	RCAP2L	CAh	Count reload/capature 2 data register low	0000 0000b
	RCAP2	CAh	16-bit SFR consists of RCAP2L and RCAP2H	0000h
	T2MOD	C9h	Timer2 mode register	0000 0000b
	T2CON	C8h	Timer2 control register	0000 0000b
	PWM_DATA3	A3h	PWM3 data register	xxxx xxxxb
	PWM_CTRL2	9Fh	PWM extend control register	0000 0000b
	PWM_CK_SE	9Eh	PWM clock divisor setting register	0000 0000b
PWMX	PWM_CTRL	9Dh	PWM control register	0000 0010b
registers	PWM_DATA0	9Ch	PWM0 data register	xxxx xxxxb
	PWM_DATA1	9Bh	PWM1 data register	xxxx xxxxb
	PWM_DATA2	9Ah	PWM2 data register	xxxx xxxxb

SPI0 S DR FBb SP10 style Output SP10 S SP10 FBb SP10 clock divisor setting register 0010 0000b SP10 CTRL FAb SP10 control register 0000 0010b SP10 TA F9b SP10 ottata register 0000 0000b SP10 TAT F8b SP10 ottata register 0000 0000b UART1 SB4D1 BFb UART1 interrupt status register 0000 0000b SUART F8b SP10 status register 0000 0000b SUART BFb UART1 interrupt status register 0000 0000b UART2 SEON1 BCh UART2 interrupt status register 0000 0000b UART2 SED12 B6h UART2 data register 0000 0000b SUART2 BSh UART2 data register 0000 0000b 0000 0000b UART3 SBUF2 B5h UART3 interrupt status register 0000 0000b UART3 SBUF3 ADh UART3 data register 0000 0000b SBUF3 ADh UART3 data register 0000 0000b <		SPI0 SETUP	FCh	SPI0 setup register	0000 0000b
SPI0 registers SPI0 CK SE FBh SPI0 colock divisor setting register 0010 0000h SPI0 CTRL FAh SPI0 control register 0000 0010b SPI0 TRL FAh SPI0 control register 0000 0010b SPI0 TRL FAh SPI0 control register 0000 1000b UART1 BFh VART1 BFh UART1 interrupt status register 0000 0000b UART1 SBAUD1 BEh UART1 interrupt status register 0100 0000b SIP1 BDh UART1 control register 0100 0000b UART2 SBAUD2 B6h UART2 baud rate setting register 0000 0000b UART3 SBUP2 B5h UART2 control register 0000 0000b UART3 SBAUD3 AEh UART3 interrupt status register 0000 0000b SUART3 SBUP3 ADh UART3 data register 0000 0000b ADC SBUT3 ADh UART3 data register 0000 0000b ADC_TRN F6h ADC antrol register 0000 0000b ADC_TRN ADh UAR					+
SPI0_CTRL FAh SP10_control register 0000 00105 SP10_DATA F9h SP10 data register xxxx xxxxb SP10_DATA F9h SP10 data register xxxx xxxxb SP10_STAT F8h SP10 data register xxxx xxxxb UART1 BBAUD1 BEh UART1 laterrupt status register 0000 0000b UART1 BBAUD1 BEh UART1 later register xxxx xxxxb SCON1 BCh UART1 control register 0100 0000b UART3 SBAUD2 B6h UART2 interrupt status register xxxx xxxb SUART2 BSh UART3 data register xxxx xxxxb xxxx xxxb SBAUD3 AEh UART3 data register xxxx xxxxb xxxx xxxb SBAUD3 AEh UART3 data register 0000 0000b xxxx xxxb ADC_PIN F7h ADC analog signal channel selection register 0000 0000b xxxx xxxb ADC_DAT_H F6h ADC configuration register 0000 0000b xxxx xxxb ADC_DAT_L F4h ADC configuratin regi					+
SPI0SPI0SPI0 data registerxxx xxxxbSP10STATF8hSPI0 status register0000 0000bUART1SBAUD1BFhUART1 interrupt status register0000 0000bregistersSBUF1BDhUART1 data registerxxxx xxxxbSCON1BChUART2 interrupt status register0000 0000bUART2SBUF1BDhUART2 interrupt status register0000 0000bSRAUD2B6hUART2 interrupt status register0000 0000bSBUF2B5hUART2 and registerxxxx xxxxbSCON2B4hUART2 control register0000 0000bUART3SBAUD3AFhUART3 interrupt status register0000 0000bUART3SBAUD3AFhUART3 data register0000 0000bSCON3AChUART3 data register0000 0000bUART3SBAUD3AFhUART3 data register0000 0000bSCON3AChUART3 data register0000 0000bADC_PINF7hADC control register0000 0000bADC_DAT_HF6hADC control register0000 0000bADC_CHANF6hADC control register0000 0000bADC_DAT_LF4hADC result data ligh byte (read only)000 xxxxbADC_DAT_LF4hADC control and status registerx000 000bADC_CTRLF2hADC control and status registerx000 000bADC_CTRLF2hADC control and status registerx000 000bADC_CTRLF2hADC control and status register<	SPI0 registers				
SPI0_STATF8hSPI0 status register0000 1000bUARTISIF1BFhUARTI interrupt status register0000 0000bUARTISBAUD1BEhUARTI data registerxxxx xxxxbSUF1BDhUARTI data registerxxxx xxxxbSCON1BChUARTI control register0100 0000bUART2SBAUD2B6hUART2 interrupt status register0000 0000bUART2SBAUD2B6hUART2 baud rate setting registerxxx xxxxbSCON1BChUART2 data registerxxxx xxxxxbSCON2B4hUART2 control register0000 0000bUART3SBAUD3AFhUART3 faut register0000 0000bUART3SBAUD3AFhUART3 faut register0000 0000bUART3SBAUD3AFhUART3 faut register0000 0000bUART3SBUF3ADhUART3 data register0000 0000bADC_PINAFhADC analog signal channel selection register0000 0000bADC_DAT_LF4hADC result data high byte (read only)xxxx xxxbADC_DAT_LF4hADC control and status register0000 0000bADC_CCRGF3hADC control and status register0000 0000bADC_CCRGF2hADC control and status register0000 0000bADC_CCRGF3hADC control and status register0000 0000bADC_CCRGF3hADC control and status register0000 0000bADC_CPGF3hADC control and status register0000 0xxxbUEP1_D					
SIF1 BFh UART1 interrupt status register 0000 0000b UART1 SBAUD1 BEh UART1 baud rate setting register xxxx xxxxxx SBUF1 BDh UART1 data register xxxx xxxxxx SCON1 BCh UART2 interrupt status register 0000 0000b UART2 B7h UART2 interrupt status register 0000 0000b SBUF2 B5h UART2 data register xxx xxxxx SCON2 B4h UART2 control register 0000 0000b UART3 SBAUD3 AFh UART3 anterrupt status register 0000 0000b SCON2 B4h UART3 control register 0000 0000b xxx xxxxb SCON3 ACh UART3 actropister 0000 0000b xxx xxxxb SCON3 ACh UART3 actropister 0000 0000b xxx xxxxb ADC_PIN F7h ADC control register 0000 0000b xxx xxxxb ADC_DAT F4h ADC result data high byte (read only) xxxx xxxb xxxx xxxb ADC_DAT F4h ADC control and status register					
UART1 registersSBAUD1BEhUART1 baud rate setting registerxxxx xxxxxSBUF1BDhUART1 data registerxxxx xxxxxSCON1BChUART1 control register0100 0000bUART2SBAUD2BChUART2 interrupt status register0000 0000bSBAUD2BChUART2 dud rate setting registerxxxx xxxxxSCON2B4hUART2 dud rate setting registerxxxx xxxxxSCON2B4hUART2 dud rate setting register0000 0000bUART3SBAUD3AEhUART3 interrupt status register0000 0000bSBAUD3AEhUART3 control register0000 0000bSCON3AChUART3 control register0000 0000bSCON3AChUART3 control register0000 0000bADC_PINF7hADC pin digital input control register0000 0000bADC_DAT_HF5hADC result data high byte (read only)0000 xxxbADC_DAT_LF4hADC constist of ADC_DAT_L and ADC_DAT_HADC analog signal channel selection register0000 0000bADC_DAT_LF2hADC control and status register0000 0000bxxxx xxxxbADC_CTRLF2hADC control and status register0000 0000bADC_CTRLF2hADC control and status register0000 0000bADC_CTRLF2hADC control and status register0000 0000xxbUEP1_DMA_HEEhEndpoint1 buffer start address high byte0000 0xxxbUEP1_DMA_HEEhEndpoint1 buffer start address high byte0000 0xxxb					
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	UART1				
SCON1BChUART1 control register0100 0000bUART2SIF2B7hUART2 interrupt status register0000 0000bUART2SBAUD2B6hUART2 baud rate setting registerxxxx xxxxxSBUF2B5hUART2 data registerxxxx xxxxxSCON2B4hUART3 control register0000 0000bUART3SBAUD3AFhUART3 interrupt status register0000 0000bSBAUD3AEhUART3 interrupt status register0000 0000bSBAUD3AEhUART3 baud rate setting registerxxxx xxxxxSCON3AChUART3 control register0000 0000bADC <pin< td="">F7hADC pin digital input control register0000 0000bADC_CHANF6hADC result data bigh byte (read only)0000 xxxbADC_TKEYregistersADC_DATF4h16-bit SFR consists of ADC_DAT_L and ADC_CTRLNxxx hADC_CTRLF2hADC control and status register0000 0000bADC_CTRLF2hADC control and status register0000 00xxbUEP1_DMA_LEEhEndpoint1 buffer start address high byte0000 0xxbUEP1_DMA_LEEhEndpoint0&& buffer start address high byte0000 0xxbUEP1_DMA_LECh<</pin<>					
SIF2 B7h UART2 interrupt status register 0000 0000b UART2 SBAUD2 B6h UART2 baud rate setting register xxxx xxxxb SBUF2 B5h UART2 data register xxxx xxxxb SCON2 B4h UART2 control register 0000 0000b UART3 SIF3 AFh UART3 data register 0000 0000b SBAUD3 AEh UART3 data register xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	1-8-10-10				
UART2 registersSBAUD2B6hUART2 bauf rate setting registerxxxx xxxxSBUF2B5hUART2 data registerxxxx xxxxSCON2B4hUART2 control register0000 0000bUART3SIF3AFhUART3 interrupt status register0000 0000bSBAUD3AEhUART3 bauf rate setting registerxxxx xxxxSBUF3ADhUART3 data registerxxxx xxxxSCON3AChUART3 data register0000 0000bADC_PINF7hADC pin digital input control register0000 0000bADC_CAT_HF5hADC result data high byte (read only)0000 xxxxADC_DAT_HF5hADC control and status register0000 0000bADC_DAT_LF4hADC control and status register0000 0000bADC_CTRLF2hADC control and status registerx000 000xxADC_CTRLF2hADC control and status registerx000 000xxADC_CTRLF2hADC control and status registerx000 000xADC_CTRLF2hADC control and status registerx000 000xADC_CTRLF2hADC control and status registerx000 000xxUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxxbUEP1_DMA_LEChEndpoint1 buffer start address low bytexxxx xxxxUEP1_DMA_LEChEndpoint2&4 buffer start address low bytexxxx xxxxbUEP1_DMA_LEChEndpoint2&4 buffer start address low bytexxxx xxxxbUEP1_DMA_LEChEndpoint2&4 buffer start add					
registersSBUF2B5hUART2 data registerxxxx xxxxbSCON2B4hUART2 control register0000 0000bUART3SIF3AFhUART3 interrupt status register0000 0000bUART3SBAUD3AEhUART3 baud rate setting registerxxxx xxxxxbSBUF3ADbUART3 data registerxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	LIART2				
SCON2B4hUART2 control register0000 0000bUART3SIF3AFhUART3 interrupt status register0000 0000bUART3SBAUD3AEhUART3 baud rate setting registerxxxx xxxxxSBUF3ADhUART3 data registerxxxx xxxxxSCON3AChUART3 control register0000 0000bADC_PINF7hADC pin digital input control register0000 0000bADC_CHANF6hADC analog signal channel selection register0000 0000bADC_DAT_HF5hADC result data high byte (read only)0000 xxxxbADC_DAT_LF4hADC consists of ADC_DAT_L and ADC_DAT_H0xxxhADC_DATF4hADC configuration register0000 0000bADC_CTRLF2hADC control and status registerx000 0000bADC_CTRLF2hADC control and status registerx000 0000bADC_CTRLF2hEheEndpoint1 buffer start address high byte0000 0000bTKEY_CTRLF1hF10ch key charging pulse width control register (write only)0000 0xxxbUEP1_DMA_LEEhEndpoint0&A buffer start address high byte0000 0xxxbUEP0_DMA_LEChEndpoint0&A buffer start address high byte0000 0xxxhUEP0_DMA_LEChEndpoint0&A buffer start address high byte0000 0xxxhUEP0_DMA_LEChEndpoint0&A buffer start address high byte0000 0xxhUEP0_DMA_LEChEndpoint0&A buffer start address high byte0000 0xxhUEP1_DMA_LEChEndpoint0&A buffer start a					
SIF3AFhUART3 interrupt status register0000 0000bUART3SBAUD3AEhUART3 baud rate setting registerxxxx xxxxSBUF3ADhUART3 data registerxxxx xxxxSCON3AChUART3 control register0000 0000bADC_PINF7hADC pin digital input control register0000 0000bADC_CHANF6hADC analog signal channel selection register0000 0000bADC_DAT_HF5hADC result data high byte (read only)0000 xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxxADC_DAT_LF4hADC configuration register0000 0000bADC_CTRLF2hADC configuration register0000 0000bADC_CTRLF2hADC control and status registerx000 0000bADC_CTRLF2hADC control and status registerx000 0000bADC_CTRLF2hADC control and status registerx000 0000bTKEY_CTRLF1hF1hF10-bit SFR consists of ADC_DIA_L and aDC control and status register0000 0000bUEP1_DMA_LEEhEndpoint1 buffer start address high byte0000 0xxxhUEP1_DMA_LEEhEndpoint0&A buffer start address high byte0000 0xxxhUEP0_DMA_LEChEndpoint0&A buffer start address high byte0000 0xxkhUEP0_DMA_LEChEndpoint0&A buffer start address high byte0000 0xxkhUEP0_DMA_LEChEndpoint0&A buffer start address high byte0000 0xxkhUEP0_DMA_LEChEndpoint0&A buffer start address hi	registers				
UART3 registersSBAUD3AEhUART3 baud rate setting registerxxxx xxxxSBUF3ADhUART3 data registerxxxx xxxxSCON3AChUART3 control register0000 0000bADC_PINF7hADC pin digital input control register0000 0000bADC_CHANF6hADC analog signal channel selection register0000 0000bADC_DAT_HF5hADC result data high byte (read only)0000 xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxbADC_DAT_LF4hADC control and status register0000 0000bADC_CTRLF2hADC control and status register0000 0000bADC_CTRLF1hF1hTouch key charging pulse width control register (write only)0000 xxxbUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxbUEP1_DMA_LEEhEndpoint1 buffer start address high byte0000 0xxbUEP0_DMA_HEChEndpoint0&4 buffer start address high byte0000 0xxbUEP0_DMA_HEChEndpoint0&4 buffer start address high byte0000 0xxbUEP0_DMA_HEChEndpoint1&4 mode control register0000 0000bUEP0_DMA_HEChEndpoint2&3 mode control register0000 00000 0000 0000 0000 0000 0000 0					+
registersSBUF3ADhUART3 data registerxxxx xxxxbSCON3AChUART3 control register0000 0000bADC_PINF7hADC pin digital input control register0000 0000bADC_CHANF6hADC analog signal channel selection register0000 0000bADC_DAT_HF5hADC result data high byte (read only)0000 xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxbADC_DAT_LF4hADC configuration register0000 0000bADC_TRLF2hADC control and status registerx000 000bADC_TRLF1hTouch key charging pulse width control register (write only)0000 xxxbVEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxbUEP1_DMA_LEEhEndpoint1 buffer start address high byte0000 0xxbUEP0_DMA_LEChEndpoint0&4 buffer start address high byte0000 0000 0xxbUEP0_DMA_LEChEndpoint0&4 buffer start address high byte0000 0xxbUEP0_DMA_LEChEndpoint0&4 buffer start address high byte0000 00000 0xxbUEP0_DMA_LEChEndpoint1&4 mode control register0000 00000 0000 00000 0000 0000 0000					+
SCON3AChUART3 control register0000 0000bADC_PINF7hADC pin digital input control register0000 0000bADC_CAANF6hADC analog signal channel selection register0000 0000bADC_DAT_HF5hADC result data high byte (read only)0000 xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxbADC_DAT_LF4h16-bit SFR consists of ADC_DAT_L and ADC_CTRL0000 0000bADC_CTRLF2hADC configuration register0000 0000bADC_CTRLF2hADC control and status registerx000 000xbADC_TRLF1hTouch key charging pulse width control register (write only)0000 xxxbUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxbUEP1_DMA_LEEhIndpoint1 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint2&3 mode control register0000 0000bUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxbUEP3_DMA_LE6hEndpoint				6 6	
ADC_PINF7hADC pin digital input control register0000 0000hADC_CHANF6hADC analog signal channel selection register0000 0000hADC_DAT_HF5hADC result data high byte (read only)0000 xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxbADC_DAT_LF4hADC configuration register0000 0000bADC_CTRLF2hADC configuration register0000 0000bADC_CTRLF2hADC control and status registerx000 000xbADC_CTRLF2hADC control and status register0000 0000bADC_DAT_LF1hTouch key charging pulse width control register (write only)0000 0xxxbUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxxhUEP1_DMA_LEEhEndpoint1 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint2&3 mode control register0000 0000bUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP3_DMA_HE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxbUEP3_DMA_LE6hEndpoint3 buff	registers				
ADC_CHAN F6h ADC analog signal channel selection register 0000 0000b ADC_DAT_H F5h ADC result data high byte (read only) 0000 xxxxb ADC_DAT_L F4h ADC result data low byte (read only) xxxx xxxxb ADC_DAT_L F4h ADC result data low byte (read only) xxxx xxxxb ADC_DAT_L F4h ADC result data low byte (read only) xxxx xxxxb ADC_DAT_F ADC_DAT_L F4h ADC result data low byte (read only) xxxx xxxxb ADC_CFG F3h ADC configuration register 0000 0000b ADC_CTRL F2h ADC control and status register x000 000xb TKEY_CTRL F1h Touch key charging pulse width control register (write only) 0000 0xxxb UEP1_DMA_H EFh Endpoint1 buffer start address high byte 0000 0xxxb UEP1_DMA_L EEh Endpoint1 buffer start address high byte 0000 0xxxb UEP0_DMA_L EEh Endpoint1 buffer start address high byte 0000 0xxxb UEP0_DMA_L ECh Endpoint0&4 buffer start address high byte 0000 0xxxb UEP0_DMA_L ECh Endpoint0&4 buffer start address high byte 0000 0xxxb UEP0_DMA_L ECh Endpoint0&4 buffer start address high byte 0000 0xxxb UEP0_DMA_L ECh Endpoint0&4 buffer start address high byte 0000 0xxxb UEP0_DMA_L ECh Endpoint1& Gentral register 0000 0000b UEP2_3_MOD EBh Endpoint2&3 mode control register 00000 0000b UEP3_DMA_L E6h Endpoint3 buffer start address high byte 0000 0xxxb UEP3_DMA_L E6h Endpoint3 buffer start address low byte xxxx xxxxb					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		— —			
ADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxbADC_DAT_LF4hADC result data low byte (read only)xxxx xxxxbADC_DATF4h16-bit SFR consists of ADC_DAT_L and ADC_DAT_H0xxxhADC_CFGF3hADC configuration register0000 0000bADC_CTRLF2hADC control and status registerx000 000xbTKEY_CTRLF1hTouch key charging pulse width control register (write only)0000 0xxbUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxbUEP1_DMA_LEEhIndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LECh16-bit SFR consists of UEP0_DMA_L and UEP0_DMA_L0xxxhUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LECh16-bit SFR consists of UEP0_DMA_L and UEP0_DMA_H0xxxhUEP1_MA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint1&4 mode control register0000 0000bUEP2_3_MODEBhEndpoint1&4 mode control register0000 0000bUEP3_DMA_LE6hIndpoint3 buffer start address low bytexxxx xxxxx <b td="">UEP3_DMA_LE6hIndpoint3 buffer start address low bytexxxx xxxxxx<b td="">UEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxxUEP3_DMA_LE6hIndpoint3 buffer start address low bytexxxx xxxx		— —			
ADC/TKEY registersImage: Constant of ADC_DAT_L and ADC_DATIf the bit SFR consists of ADC_DAT_L and ADC_DAT_H0xxxhADC_CFGF3hADC configuration register0000 0000bADC_CTRLF2hADC control and status registerx000 000xbADC_CTRLF2hADC control and status register0000 0000bTKEY_CTRLF1hTouch key charging pulse width control register (write only)0000 0000bUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxxbUEP1_DMA_LEEhEndpoint1 buffer start address low bytexxxx xxxxbUEP1_DMA_LEEhIf-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H0xxxhUEP0_DMA_HEChEndpoint0&4 buffer start address high byte0000 0xxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint1&4 mode control register0000 0000bUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hIf-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxh					
registersADC_DATF4hADC_DAT_H0xxxhADC_CFGF3hADC configuration register0000 0000bADC_CTRLF2hADC control and status registerx000 000xbTKEY_CTRLF1hTouch key charging pulse width control register (write only)0000 0000bUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxxbUEP1_DMA_LEEhEndpoint1 buffer start address low bytexxxx xxxxbUEP1_DMA_LEEhI6-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H0xxxhUEP0_DMA_HEChEndpoint0&4 buffer start address high byte0000 0xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxx <b td="">UEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxxUEP0_DMA_LEChEndpoint1& SFR consists of UEP0_DMA_L and UEP0_DMA_L0xxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 00000UEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hI6-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh	ADC/TVEV	ADC_DAI_L	Г4П		
ADC_CTRLF2hADC control and status registerx000 000xbTKEY_CTRLF1hTouch key charging pulse width control register (write only)0000 0000bUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 00xxbUEP1_DMA_LEEhEndpoint1 buffer start address low bytexxxx xxxxbUEP1_DMA_LEEhI6-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H0xxxhUEP0_DMA_HEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint16×1 start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_HE7hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hI6-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxh		ADC_DAT	F4h		0xxxh
ADC_CTRLF2hADC control and status registerx000 000xbTKEY_CTRLF1hTouch key charging pulse width control register (write only)0000 0000bUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 00xxbUEP1_DMA_LEEhEndpoint1 buffer start address low bytexxxx xxxxbUEP1_DMA_LEEhI6-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H0xxxhUEP0_DMA_HEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint16×1 start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_HE7hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hI6-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxh	U U	ADC CFG	F3h		0000 0000b
TKEY_CTRLF1hTouch key charging pulse width control register (write only)0000 0000bUEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxbUEP1_DMA_LEEhEndpoint1 buffer start address low bytexxxx xxxxbUEP1_DMA_LEEhId-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H0xxxhUEP0_DMA_HEDhEndpoint0&4 buffer start address high byte0000 0xxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxbUEP0_DMA_LEChEndpoint1&4 buffer start address low bytexxxx xxxbUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxbUEP3_DMA_LE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxh			F2h		
UEP1_DMA_HEFhEndpoint1 buffer start address high byte0000 0xxxbUEP1_DMA_LEEhEndpoint1 buffer start address low bytexxxx xxxxbUEP1_DMA_LEEhI6-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H0xxxhUEP0_DMA_HEDhEndpoint0&4 buffer start address high byte0000 0xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint2&3 mode control register0000 0000bUEP2_3_MODEBhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMA_LE6hI6-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxh		TKEY CTDI	E11		0000 0000Ь
UEP1_DMA_LEEhEndpoint 1 buffer start address low bytexxxx xxxxbUEP1_DMA_LEEhI6-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H0xxxhUEP0_DMA_HEDhEndpoint0&4 buffer start address high byte0000 0xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChI6-bit SFR consists of UEP0_DMA_L and UEP0_DMA_H0xxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint3 buffer start address high byte0000 0xxbUEP3_DMA_HE7hEndpoint3 buffer start address low bytexxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		IKEY_CIKL	FIN	register (write only)	
USB registersImage: Construct of the start address of the start address of the start address high byte0000 0xxxbUSB registersUEP0_DMA_HEChEndpoint0&4 buffer start address high byte0000 0xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChI6-bit SFR consists of UEP0_DMA_L and UEP0_DMA_H0xxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hI6-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh		UEP1_DMA_H	EFh	Endpoint1 buffer start address high byte	0000 0xxxb
USB registersUEP1_DMAEEh UEP1_DMA_HUEP1_DMA_HOxxxhUSB registersUEP0_DMA_LEChEndpoint0&4 buffer start address high byte0000 0xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMAECh16-bit SFR consists of UEP0_DMA_L and UEP0_DMA_H0xxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh		UEP1_DMA_L	EEh	Endpoint 1 buffer start address low byte	xxxx xxxxb
USB registersUEP0_DMA_HEDhEndpoint0&4 buffer start address high byte0000 0xxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMAECh16-bit SFR consists of UEP0_DMA_L and UEP0_DMA_H0xxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hI6-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh			EEL	16-bit SFR consists of UEP1_DMA_L and	Owweb
USB registersUEP0_DMA_LEChEndpoint0&4 buffer start address low bytexxxx xxxxbUEP0_DMAECh16-bit SFR consists of UEP0_DMA_L and UEP0_DMA_H0xxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMAE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh		UEPI_DMA	EEN	UEP1_DMA_H	UXXXII
USB registersUEP0_DMAECh16-bit SFR consists of UEP0_DMA_L and UEP0_DMA_HOxxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxbUEP3_DMA_LE6hE6hEndpoint3 buffer start address low bytexxxx xxxbUEP3_DMAE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxh		UEP0_DMA_H	EDh	Endpoint0&4 buffer start address high byte	0000 0xxxb
USB registersUEP0_DMAEChUEP0_DMA_H0xxxhUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMAE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh		UEP0_DMA_L	ECh	Endpoint0&4 buffer start address low byte	xxxx xxxxb
registersUEP2_3_MODEBhEndpoint2&3 mode control register0000 0000bUEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMAE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh	USB	UEP0_DMA	ECh		0xxxh
UEP4_1_MODEAhEndpoint1& 4 mode control register0000 0000bUEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMAE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh	registers	UEP2 3 MOD	EBh		0000 0000b
UEP3_DMA_HE7hEndpoint3 buffer start address high byte0000 0xxxbUEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMAE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh					+
UEP3_DMA_LE6hEndpoint3 buffer start address low bytexxxx xxxxbUEP3_DMAE6h16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H0xxxh					1
UEP3_DMA E6h 16-bit SFR consists of UEP3_DMA_L and 0xxxh					
UEP3_DMA E6h UEP3_DMA_H 0xxxh					
UEP2_DMA_H E5h Endpoint2 buffer start address high byte 0000 0xxxb		UEP3_DMA	E6h		0xxxh
		UEP2_DMA H	E5h		0000 0xxxb

UEP2_DMA_L	E4h	Endpoint2 buffer start address low byte	xxxx xxxxb
UEP2_DMA	E4h	16-bit SFR consists of UEP2_DMA_L and UEP2_DMA_H	0xxxh
USB_DEV_AD	E3h	USB device address register	0000 0000b
USB_CTRL	E2h	USB control register	0000 0110b
USB_INT_EN	E1h	USB interrupt enable register	0000 0000b
UEP4_T_LEN	DFh	Endpoint4 transmittal length register	0xxx xxxxb
UEP4_CTRL	DEh	Endpoint4 control register	0000 0000b
UEP0_T_LEN	DDh	Endpoint0 transmittal length register	0xxx xxxxb
UEP0_CTRL	DCh	Endpoint0 control register	0000 0000b
USB_RX_LEN	DBh	USB receiving length register (read only)	0xxx xxxxb
USB_MIS_ST	DAh	USB miscellaneous status register (read only)	xx10 1000b
USB_INT_ST	D9h	USB interrupt status register (read only)	00xx xxxxb
USB_INT_FG	D8h	USB interrupt flag register	0010 0000b
UEP3_T_LEN	D7h	Endpoint3 transmittal length register	0xxx xxxxb
UEP3_CTRL	D6h	Endpoint3 control register	0000 0000b
UEP2_T_LEN	D5h	Endpoint2 transmittal length register	0000 0000b
UEP2_CTRL	D4h	Endpoint2 control register	0000 0000b
UEP1_T_LEN	D3h	Endpoint1 transmittal length register	0xxx xxxxb
UEP1_CTRL	D2h	Endpoint1 control register	0000 0000b
UDEV_CTRL	Dlh	USB device port control register	00xx 0000b

5.3 General 8051 register

Table 5.3.1 List of general 8051 registers

Name	Address	Description	Reset value
В	F0h	B register	00h
A, ACC	E0h	Accumulator	00h
PSW	D0h	Program status register	00h
		Global configuration register (CH547 Bootloader)	60h
	D 11	Global configuration register (CH547 application)	40h
GLOBAL_CFG	B1h	Global configuration register (CH546 Bootloader)	20h
		Global configuration register (CH546 application)	00h
	A 11.	CH547 chip ID (read only)	47h
CHIP_ID	Alh	CH546 chip ID (read only)	46h
SAFE_MOD	Alh	Safe mode control register (read only)	00h
PCON	87h	Power control register (power on reset)	10h
DPH	83h	Data pointer high	00h
DPL	82h	Data pointer low	00h
DPTR	82h	16-bit SFR consists of DPL and DPH	0000h
SP	81h	Stack pointer	07h

B register (B):

Bit	Name	Access	Description	Reset value
[7:0]	В	RW	Arithmetic register, mainly used for multiplication and division operations; it supports bit addressing	00h

A accumulator (A, ACC):

Bit	Name	Access	Description	Reset value
[7:0]	A/ACC	RW	Arithmetic accumulator, supports bit addressing	00h

Program status register (PSW):

Bit	Name	Access	Description	Reset value
7	СҮ	RW	Carry flag: used to record the carry or borrow of the highest bit. This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow (subtraction). It is cleared to 0 by all other arithmetic operations.	0
6	AC	RW	Auxiliary carry flag. This bit is set to 1 when the last arithmetic operation resulted in a carry into(addition) or a borrow from(subtraction)the high order nibble. It is cleared to 0 by all other arithmetic operations	0
5	F0	RW	Flag0: It supports bit addressing. User-defined. Can be reset and set by software.	0
4	RS1	RW	Register bank select control bit 1	0
3	RS0	RW	Register bank select control bit 0	0
2	OV	RW	Overflow flag: This bit is set to 1 when the operation result exceeds 8-bit binary number in addition/subtraction operations, and the flag will overflow. Otherwise it will be aleared to 0.	0
1	F1	RW	Flag1: It supports bit addressing. User-defined. Can be reset or set by software.	0
0	Р	RO	Parity flag: It records the parity of "1" in accumulator A after the instruction is executed. This bit is set to 1 if the number of "1" is odd. It is cleared if the number of "1" is even.	0

The program status word (PSW) contains status that reflects the current state of the CPU and it supports bit addressing. It contains the carry bit, the auxiliary carry (for BCD operation), parity bit, overflow bit and the 2 register bank select bits RS0 and RS1. The space of register bank may be accessed by direct or indirect way.

RS1	RS0	Register bank				
0	0	Bank0 (00h-07h)				
0	1	Bank1 (08h-0Fh)				
1	0	Bank2 (10h-17h)				
1	1	Bank3 (18h-1Fh)				

Table 5.3.2 List of register bank RS1 and RS0

Table 5.3.3 Operations affecting flag bits (X means that flag bit is related to the operation result)

Operation	CY	OV	AC	Operation	CY	OV	AC
ADD	Х	Х	Х	SETB C	1		
ADDC	Х	Х	Х	CLR C	0		
SUBB	Х	Х	Х	CPL C	Х		
MUL	0	Х		MOV C, bit	Х		
DIV	0	Х		ANL C, bit	Х		
DAA	Х			ANL C,/bit	Х		
RRC A	Х			ORL C, bit	Х		
RLC A	Х			ORL C,/bit	Х		
CJNE	Х						

Data pointer register (DPTR):

Bit	Name	Access	Description	Reset value
[7:0]	DPL	RW	Data pointer low byte	00h
[7:0]	DPH	RW	Data pointer high byte	00h

The16-bit data pointer (DPTR) consists of DPL and DPH, which is used to access xSFR, xBUS, xRAM data memory and program memory. Actually, DPTR has 2 physical 16-bit data pointers DPTR0 and DPTR1, which are dynamically switched by DPS in XBUS_AUX.

Stack pointer (SP):

Bit	Name	Access	Description	Reset value
[7:0]	SP	RW	Stack pointer, mainly used for program and interrupt call, also for data push and pull	07h

Specific function of stack: protect breakpoint and protect site, and carry out management on the first-in last-out principle. During instack, SP pointer automatically adds 1, saving the data and breakpoint information. During outstack, SP pointer points to the data unit and automatically substracts 1. The initial value of SP is 07h after reset, and the corresponding default stack storage starts from 08h.

5.4 Unique register

Global configuration register (GLOBAL_CFG), only can be written in safe mode:

Bit	Name	Access	Description	Reset value
[7:6]	Reserved	RO	For CH547, fixed to 01	01b
[7:6]	Reserved	RO	For CH546, fixed to 00	00b

5	bBOOT_LOAD	RO	Boot loader status bit, for discriminating Bootloader or Application. Set to 1 by power on reset. Cleared to 0 by software reset.For all chips with ISP boot loader:1: It has never been reset by software, usually in ISP boot loader state.0: It has been reset by software, usually in application state.	1
4	bSW_RESET	RW	Software reset. If it is set to 1, software reset occurs. Automatically reset by hardware.	0
3	bCODE_WE	RW	Flash-ROM write enable:0: Write protection.1: Flash-ROM can be written and erased.	0
2	bDATA_WE	RW	Flash-ROM DataFlash write enable:0: Write protection.1: DataFlash can be written and erased.	0
1	Reserved	RO		0
0	bWDOG_EN	RW	Watchdog reset enable: 0: As timer only. 1: Enable reset if timer overflow.	0

Chip ID (CHIP_ID):

Bit	Name	Access	Description	Reset value
[7:0]	CHIP_ID	RO	For CH547, fixed to 47h to identify the chip	47h
[7:0]	CHIP_ID	RO	For CH546, fixed to 46h to identify the chip	46h

Safe mode control register (SAFE_MOD):

Bit	Name	Access	Description	Reset value
[7:0]	SAFE_MOD	WO	To enter or get out of safe mode	00h

Some SFRs can only be written in safe mode, while they are always read-only in non-safe mode. Steps to enter safe mode:

(1). Write 55h to register.

- (2). Write AAh to register.
- (3). 13-23 system frequency periods are in safe mode, one or more safe SFRs or general SFRs can be changed during this time.
- (4). After the period expires, safe mode ends automatically.
- (5). Write anything to this register can get out of safe mode in advance.

6. Memory structure

6.1 Memoey space

CH547 addressing memory is divided into program memory, internal code memory, external data memory,

read only and OTP space.

Figure 6.1 Memory structure diagram

Intern	al Data Address Space		
FFH	Upper 128 bytes internal RAM	SFR	
80H	(indirect addressing by @R0/R1)	(Direct addressing)	
7FH	Lower 128 bytes internal RAM	OTP data	03FH
0.011	(direct or indirect addressing)		020H
00H		Read Only information	01FH 000H
Extern	al Data Address Space	Program Address Space	
FFFFH		ROM CFG ADDR	FFFFH FFFEH FFFDH
	Reserved area @xdata	Boot Loader Code Flash BOOT_LOAD_ADDR	F400H
0400H		Data Flash or Code Flash	F3FFH
03FFH			F000H
	1KB on-chip expanded xRAM @xdata (indirect addressing by MOVX)	Application Code Flash	EFFFH
0000H			0000H

6.2 Program memory

Program memory is total 64KB, as shown in Figure 6.1, and all is used for flash-ROM, including CodeFlash to save the command code, DataFlash to save the nonvolatile data, and Configuration Information space to configure the information.

Data Flash (EEPROM) addressing from F000h to F3FFH supports byte (8 bits) read, byte (8 bits) write, block (1 to 64 bytes) write, and block (64 bytes) erase. keeping the data after chip power-down, and also may be used for CodeFlash.

CodeFlash includes application code of low address and the Bootloader code of high address, they can also be combined with DataFlash for storing single application code.

For CH546, application code area of Code Flash is only 32KB.

Configuration information is total 16 bits, and may be configured by programmer, refer to Table 6.1.

Address	Name	Description	Recommanded value
15	Code_Protect	Code and data protection mode in flash-ROM: 0: Reading behavior permit. 1: Reading behavior forbidden.	0/1

Table 6.2 Description of flash-ROM Configuration Information

14	No_Boot_Load	BootLoader start mode enable: 0: Start from address 0000h. 1: Start from address F400h.	1
13	En_Long_Reset	Additional delay during power-up reset enable: 0: Standard short reset. 1: Long reset, add 44mS.	0
12	En_P5.7_RESET	P5.7 reset function enable:0: Disable.1: Enable.	1
11		Reserved	0
10		Reserved	0
9	Must_1	(Auto set to 1 by the programmer)	1
8	Must_0	(Auto set to 0 by the programmer)	0
[7:3]	All_0	(Auto set to 00000b by the programmer)	00000b
[2:0]	LV_RST_VOL (Vpot)	LVR threshold voltage selection (error 4%): 000, 001: 2.4V. 010: 2.7V. 011: 3.0V. 100: 3.6V. 101: 4.0V. 110: 4.3V. 111: 4.6V.	000Ъ

6.3 Data memory space

Internal data memory is total 256 bytes, as shown in Figure 6.1, are all used for SFR and iRAM, iRAM is used for stack and fast data cache, including R0-R7, bit data, byte data and idata.

External data memory is total 64KB, as shown in Figure 6.1. Part of it is used for 1KB on-chip expanded xRAM, others (0400h to FFFFh) are reserved area.

Read-only information space and OTP data space each has 32 bytes, as shown in Figure 6.1, and they need to be accessed through a special operation.

6.4 flash-ROM register

Table 6.4 Li	st of flash-RO	M registers
--------------	----------------	-------------

Name Address		Description	
i (unic	71441055	Description	
ROM_DATA_HH	8Fh	High byte of flash-ROM data register high word (read only)	xxh
ROM_DATA_HL	8Eh	Low byte of flash-ROM data register high word (read only)	xxh
ROM_DATA_HI	8Eh	16-bit SFR consists of ROM_DATA_HL and ROM_DATA_HH	xxxxh
ROM_BUF_MOD	8Fh	Buffer mode register for flash-ROM erase/program operation	xxh
ROM_DAT_BUF	8Eh	Data butter register for flash-ROM erase/program operation	xxh
ROM_STATUS	86h	flash-ROM status register (read only)	00h
ROM_CTRL	86h	flash-ROM control register (write only)	00h
ROM_ADDR_H	85h	flash-ROM address register high	xxh

ROM_ADDR_L	84h	flash-ROM address register low	xxh
ROM_ADDR	84h	16-bit SFR consists of ROM_ADDR_L and ROM_ADDR_H	xxxxh
ROM_DATA_LH	85h	High byte of flash-ROM data register low word (read only)	xxh
ROM_DATA_LL	84h	Low byte of flash-ROM data register low word (read only)	xxh
ROM_DATA_LO	84h	16-bit SFR consists of ROM_DATA_LL and ROM_DATA_LH	xxxxh

Flash-ROM address register (ROM_ADDR):

Bit	Name	Access	Description	Reset value
[7:0]	ROM_ADDR_H	RW	Flash-ROM address register high byte	xxh
[7:0]	ROM_ADDR_L	RW	Flash-ROM address register low byte	xxh

Flash-ROM data register (ROM_DATA_HI, ROM_DATA_LO):

Bit	Name	Access	Description	Reset value
[7:0]	ROM_DATA_HH	RO	High byte of flash-ROM data register high word (16 bits)	xxh
[7:0]	ROM_DATA_HL	RO	Low byte of flash-ROM data register high word (16 bits)	xxh
[7:0]	ROM_DATA_LH	RO	High byte of flash-ROM data register low word (16 bits)	xxh
[7:0]	ROM_DATA_LL	RO	Low byte of flash-ROM data register low word (16 bits)	xxh

Buffer mode register for flash-ROM erase/program operation (ROM_BUF_MOD):

Bit	Name	Access	Description	Reset value
7	bROM_BUF_BYTE	RW	Buffer mode for flash-ROM erase/program operation: 0: Block program mode, and the data to be written is stored in xRAM pointed by DPTR. During programming, CH547 will automatically fetch data from xRAM in sequence and temporarily store it in ROM_DAT_BUF and then write into flash-ROM. It supports 1 to 64-byte length, and the actual length =MASK_ROM_ADR_END-ROM_ADDR_L[5:0]+1. 1: Byte program or 64-byte block erase mode. The data to be written is directly stored in ROM_DAT_BUF.	x
6	Reserved	RW	Reserved	х
[5:0]	MASK_ROM_ADDR	RW	In flash-ROM block program mode, these bits are the lower 6 bits of the end address of the flash-ROM block program operation (including such address). In flash-ROM byte program or 64-byte block erase mode, these bits are reserved and recommended to be 00h.	xxh

Data buffer register for flash-ROM erase/program operation (ROM_DAT_BUF):

Bit	Name	Access	Description	Reset value
[7:0]	ROM_DAT_BUF	RW	Data butter register for flash-ROM erase/program operation	xxh

Bit	Name	Access	Description	Reset value
[7:0]	ROM_CTRL	WO	Flash-ROM control register	00h

Flash-ROM control register (ROM CTRL):

Flash-ROM status register (ROM STATUS):

Bit	Name	Access	Description	Reset value
7	Reserved	RO	Reserved	1
6	bROM_ADDR_OK	RO	Flash-ROM operation address OK: 0: The parameter is invalid. 1: The address is valid.	0
[5:2]	Reserved	RO	Reserved	0000b
1	bROM_CMD_ERR	RO	Flash-ROM operation command error:0: The command is valid.1: Unknown command or timeout.	0
0	Reserved	RO	Reserved	0

6.5 Flash-ROM operation steps

1. Flash-ROM erase, changing all data bits in the target block to 0:

- (1). Get into safe mode, SAFE_MOD = 55h; SAFE_MOD = 0AAh;
- (2). Enable writing by setting GLOBAL_CFG, bCODE_WE corresponds to code, and bDATA_WE to data;
- (3). Set ROM_ADDR, write in 16-bit destination address, high 10 bits valid only;
- (4). Set ROM_BUF_MOD to 80h, to select 64-byte block erase mode;
- (5). Optional step. Set ROM_DAT_BUF to 00h;
- (6). Set ROM_CTRL to 0A6h, to execute block erase operation, and the program will automatically suspend during the operation;
- (7). After the operation, the program goes on. Read ROM_STATUS to check the operation result. If multiple blocks need to be erased, repeat steps (3) to (7). The sequence of step (3), (4), and (5) can be exchanged;
- (8). Get into safe mode again, SAFE_MOD = 55h; SAFE_MOD = 0AAh;
- (9). Enable write protection by setting GLOBAL_CFG, bCODE_WE=0, bDATA_WE=0.
- 2. Flash-ROM byte write, changing some data bits in the target byte from 0 to 1 (the bit data cannot be changed from 1 to 0):
 - (1). Get into safe mode, SAFE_MOD = 55h; SAFE_MOD = 0AAh;
 - (2). Enable writing by setting GLOBAL_CFG, bCODE_WE corresponds to code, and bDATA_WE to data;
 - (3). Set ROM_ADDR, write in 16-bit destination address;
 - (4). Set ROM_BUF_MOD to 80h, to select byte program mode;
 - (5). Set ROM_DAT_BUF as the byte data to be written;
 - (6). Set ROM_CTRL to9Ah, to execute write operation, and the program will automatically suspend during operation;

- (7). After the operation, the program goes on. Read ROM_STATUS to check the operation result. If multiple blocks need to be written, repeat steps (3) to (7). The sequence of step (3), (4), and (5) can be exchanged;
- (8). Get into safe mode again, SAFE MOD = 55h; SAFE MOD = 0AAh;
- (9). Enable write protection by setting GLOBAL_CFG, bCODE_WE=0, bDATA_WE=0.
- 3. Flash-ROM block write, changing some data bits in multiple target bytes from 0 to 1 (the bit data cannot be changed from 1 to 0):
 - (1). Get into safe mode, SAFE_MOD = 55h; SAFE_MOD = 0AAh;
 - (2). Enable writing by setting GLOBAL_CFG, bCODE_WE corresponds to code, and bDATA_WE to data;
 - (3). Set ROM_ADDR, write in 16-bit start destination address, such as 1357h;
 - (4). Set ROM_BUF_MOD as the lower 6 bits of the end destination address (included), and such end address should be greater than or equal to the ROM_ADDR_L[5:0] start destination address, select block program mode. For example: if the end address is 1364h, ROM_BUF_MOD should be set to 24h (64H &3Fh), and the calculated number of bytes of the data block =0Dh;
 - (5). In xRAM, allocate a buffer based on the alignment in 64 bytes, such as 0580h to 05BFh, specify the offset address in such buffer with the lower 6 bits of the start destination address, obtain the xRAM buffer start address of this data block program operation, store the data block to be written from the xRAM buffer start address, and set the xRAM buffer start address into DPTR, e.g. DPTR=0580h+(57h&3Fh)=0597h, actually only the xRAM of 0597h-05A4h address is used in this programming operation;
 - (6). Set ROM_CTRL to 09Ah, to execute write operation, and the program will automatically suspend during operation;
 - (7). After the operation, the program goes on. Read ROM_STATUS to check the operation result. If multiple blocks need to be written, repeat steps (3) to (7). The sequence of step (3), (4), and (5) can be exchanged;
 - (8). Get into safe mode again, SAFE_MOD = 55h; SAFE_MOD = 0AAh;
 - (9). Enable write protection by setting GLOBAL_CFG, bCODE_WE=0, bDATA_WE=0.
- 4. Flash-ROM read:

Read data or code from the destination address through instruction MOVC or pointer of program area.

- 5. OTP byte write, changing some data bits in the target byte from 0 to 1 (the bit data cannot be changed from 1 to 0):
 - (1). Get into safe mode, SAFE_MOD = 55h; SAFE_MOD = 0AAh;
 - (2). Enable writing by setting GLOBAL_CFG (bDATA_WE);
 - (3). Set ROM_ADDR, write destination address (20h-3Fh), actually only the higher 4 bits of the lower 6 bits are valid;
 - (4). Set ROM_BUF_MOD to 80h, to select byte program mode;
 - (5). Set ROM_DAT_BUF as the byte data to be written;
 - (6). Set ROM_CTRL to 099h, to execute write operation, and the program will automatically suspend during operation;
 - (7). After the operation, the program goes on. Read ROM_STATUS to check the operation result. If multiple blocks need to be written, repeat steps (3) to (7). The sequence of step (3), (4), and (5) can be exchanged;

- (8). Get into safe mode again, SAFE_MOD = 55h; SAFE_MOD = 0AAh;
- (9). Enable write protection by setting GLOBAL_CFG (bCODE_WE=0, bDATA_WE=0).

6. ReadOnly information space or OTP data space read in 4 bytes:

- (1). Set ROM_ADDR, write the destination address based on the alignment in 4 bytes (00h-3Fh), actually only the lower 6 bits are valid;
- (2). Set ROM_CTRL to 08Dh, to execute read operation, and the program will automatically suspend during operation;
- (3). After the operation, the program goes on. Read ROM STATUS to check the operation result;
- (4). Obtain 4-byte data from ROM_DATA_HI and ROM_DATA_LO in flash-ROM data register.

7. Note: It is recommended that flash-ROM/EEPROM be erased/programmed only at -20°C to 85°C ambient temperature. If the erase/program operation is conducted beyond the above temperature range, generally it works normally, but there may be the possibility of reducing data retention ability TDR and reducing the erase/program cycle endurance or even affecting the accuracy of data.

6.6 On-board program and ISP download

When Code_Protect=0, the code and data in CH547 flash-ROM may be read and written through synchronous serial interface by an external programmer. When Code_Protect=1, the code and data in flash-ROM are protected, it can be erased but not read, Code_Protect will be removed after erase when power-up.

When CH547 presets BootLoader, it supports downloading application code through USB or UART. Without Bootloader, application code and Bootloader may only download through specialized programmer. Reserve 4 wires between CH547 nd programmer for on-board programming in the circuit. The necessary pins are: P1.4, P1.6 and P1.7.

Pin	GPIO	Description
RST	P5.7	Reset control, get into programming state when high level (optional)
SCS	P1.4	Chip selection (necessary), high level default, active low
SCK	P1.7	Clock in (necessary)
MISO	P1.6	Data out (necessary)

Table 6.6.1 Wires between CH547 and programmer

6.7 Global unique ID

CH547 MCUs all have a global unique identification number (ID) when out of factory. ID and verification total 8 bytes, located in the special read-only register form address 10h. For details, please refer to program routines.

Address	ID description
10h, 11h	ID number first word, little-endian
12h, 13h	ID number second word, little-endian
14h, 15h	ID number third word, little-endian
16h, 17h	ID number word CUSUM verification

Table 6.7.1 Chip ID address table

The ID number can be used with the downloading tools to encrypt the target program. For the general application, only the first 32 bits of the ID number are used.

6.8 Calibration information of Temperature Sensor (TS)

The calibration information of the temperature sensor is located in the read-only register form address 0Ch. For details, please refer to program routines.

7. Power management, sleep and reset

7.1 External power in

CH547 has a built-in 5V to 3.3V low dropout voltage regulator (LDO), and the generated 3.3V power is used in USB and other modules. CH547 supports external 5V or 3.3V or even 2.8V supply voltage input. Refer to the following table for the two supply voltage input modes.

External power voltage	VDD voltage: external voltage 2.8V~5V	V33 voltage: internal USB voltage 3.3V (Notes: V33 will be automatically shorted to VDD during sleep)
3.3V or 2.8V Including <3.6V	3.3V voltage input to I/O and LDO.A decoupling capacitor not less than 0.1uF to the ground necessarily.	Short VDD input as internal USB power. A decoupling capacitor not less than 0.1uF to the ground necessarily.
5V Including >3.6V	5V voltage input to I/O and LDO. A decoupling capacitor not less than 0.1uF to the ground necessarily.	Internal voltage regulator 3.3V output and 3.3V internal USB power input. A decoupling capacitor not less than 0.1uF to the ground necessarily.

After power on or system reset, CH547 is in running state by default. On the premise that the performance meets the requirements, the power consumption can be reduced during operation by appropriately reducing the system clock. When CH547 does not need to run at all, set PD in PCON to enter sleep mode, and may be waked up by USB, UART0, UART1, SPI0 and part of GPIOs.

7.2 Power and sleep control register

Table 7.2.1 Power and sleep control registers

Name	Address	Description	Reset value
WDOG_COUNT	FFh	Watchdog count register	00h
RESET_KEEP	FEh	Reset keep register	00h
POWER_CFG	BAh	Power management configuration register	03h
WAKE_CTRL	A9h	Wake-up control register	00h
PCON	87h	Power control register	10h

Watchdog count register (WDOG_COUNT):

Bit	Name	Access	Description	Reset value
[7:0]	WDOG_COUNT	RW	Watchdog current count value. WDOG_COUNT overflows when count to 0FFh and turn to 00h. The interrupt flag bWDOG_IF_TO will auto set 1 when watchdog count register overflows.	00h

Reset keep register (RESET_KEEP):

Bit	Name	Access	Description	Reset value
[7:0]	RESET_KEEP	RW	Reset keep register, it may be modified by setting, except power-on reset may set it 0, no other resets may change it.	00h

Power management configuration register (POWER_CFG), only can be written in safe mode:

Bit	Name	Access	Description	Reset value
7	bPWR_DN_MODE	RW	Sleep power off mode selection:0: Power off/deep sleep mode, saving more power, but wake up slowly.1: Standby/normal sleep mode, wake up quickly.	0
6	bUSB_PU_RES	RW	 USB pull-up resistance selection: 0: 1.5KΩ, for the case when V33 is 3.3V. 1: 7KΩ, for the case when V33 is 5V. 	0
5	bLV_RST_OFF	RW	Low voltage reset detection module OFF: 0: Enable supply voltage detection and generate reset signal at low voltage. 1: Low voltage detection module off.	0
4	bLDO_3V3_OFF	RW	 USB voltage regulator LDO OFF control (auto OFF during sleep): 0: 3.3V voltage is generated by VDD power supply for USB and other modules. 1: Disable LDO and internally short V33 to VDD. 	0
3	bLDO_CORE_VOL	RW	Core voltage mode:0: Normal voltage mode.1: Boost voltage mode, with better performance, and support higher system clock.	0
[2:0]	MASK_ULLDO_VO L	RW	Data keep supply voltage selection in power off/deep sleep mode: 000: 2.0V. 001: 1.9V. 010: 1.8V. 011: 1.7V. 100: 1.6V. 101: 1.5V. 110: 1.4V. 111: 1.3V.	011b

Wake-up control register (WAKE_CTRL), only can be written in safe mode:

Bit	Name	Access	Description	Reset value
			USB event wake-up enable:	
7	bWAK_BY_USB	RW	1: Enable.	0
			0: Disable.	
6	bWAK RXD1 LO	RW	UART1 pin RXD1 low-level input event wake-up enable:	0
6	OWAK_KADI_LO	KW	0: Disable.	0

			1: Enable.	
			Select RXD1 or RXD1_according to bUART1_PIN_X=0/1.	
			P1.5 low-level wake-up enable	
5	bWAK_P1_5_LO	RW	0: Disable.	0
			1: Enable.	
			P1.4 low-level wake-up enable	
4	bWAK_P1_4_LO	RW	0: Disable.	0
			1: Enable.	
			P0.3 low-level wake-up enable	
3	bWAK_P0_3_LO	RW	0: Disable.	0
			1: Enable.	
			P5.7 high-level and INT3 low level wake-up enable	
2	bWAK_P57H_INT3L	RW	0: Disable.	0
			1: Enable.	
			INT0 edge change and P3.3 low-level wake-up enable.	
1	LWAR DITOR DOOL	RW	0: Disable.	0
1	bWAK_INT0E_P33L	KW	1: Enable.	0
			INT0 selects INT0 or INT0_according to bINT0_PIN_X=0/1.	
			UART0 pin RXD0 low-level input wake-up enable.	
0		DW	0: Disable.	0
0	bWAK_RXD0_LO	RW	1: Enable.	0
			Select RXD0 or RXD0_ according to bUART0_PIN_X=0/1.	

Voltage comparator wake-up enable is controlled by bCMP_EN. When bCMP_EN is 1, it will automatically wake up if the comparator result changes.

Bit	Name	Access	Description	Reset value
7	SMOD	RW	Baud rate selection for UART0 mode 1/2/3 when timer1 is used to generate UART0 baud rate:0: Slow mode.1: Fast mode.	0
6	Reserved	RO	Reserved	0
5	bRST_FLAG1	R0	Recent reset flag high bit	0
4	bRST_FLAG0	R0	Recent reset flag low bit	1
3	GF1	RW	General purpose flag bit 1 User-defined. Can be reset and set by software	0
2	GF0	RW	General purpose flag bit 0 User-defined. Can be reset and set by software	0
1	PD	RW	Power-down enable bit Sleep after set to 1. Auto cleared by wake-up hardware. It is strongly recommended to disable global interrupts before sleep (EA=0).	0
0	Reserved	RO	Reserved	0

Power control register (PCON):

bRST_FLAG1	bRST_FLAG0	Reset flag description
0	0	Software reset, source: bSW_RESET=1 and (bBOOT_LOAD=0 or
		bWDOG_EN=1)
0	1	Power on reset or low voltage detection reset, source: voltage on VDD
0	1	is lower than checking voltage
1	0	Watchdog reset, source: bWDOG_EN=1 and watchdog timeout
1	0	overflows
1	1	External input manual reset by RST pin, source: En_P5.7_RESET=1 and
1		P5.7 high-level input

Table 7.2.2 Description of recent reset flag

7.3 Reset control

CH547 has 5 reset sources: power on reset, low voltage detection reset, external input reset, software reset, and watchdog reset. The latter three are hot reset.

7.3.1 Power on reset and low voltage detection reset

Power on reset (POR) generates from internal detection circuit, and auto delay Tpor to keep reset status. CH547 runs at the end of delay.

Low voltage detection reset (LVR) generates from internal voltage detection circuit. The LVR circuit continuously monitors the voltage on VDD pin. When it is lower than the detection level (Vpot), LVR generates, and auto delay Tpor to keep reset status. CH547 runs at the end of delay.

Only power-on reset and low voltage detection reset can enable CH547 to reload the configuration information and clear RESET_KEEP, other hot resets do not affect.

7.3.2 External input reset

External input reset is generated by the high-level on RST. The reset occurs when En_P5.7_RESET=1, and high level on RST keeping time is longer than Trst. After high-level ends, auto delay Trdl to keep reset status. CH547 runs from address 0 at the end of delay.

7.3.3 Software reset

CH547 supports internal software reset to reset the CPU and restart without external intervention. Set bSW_RESET in GLOBAL_CFG to 1 to execute software reset, and auto delay Trdl to keep reset status. CH547 runs from address 0 after delay, and the bSW_RESET bit is reset automatically by hardware.

When bSW_RESET is set to 1, if bBOOT_LOAD=0 or bWDOG_EN=1, then bRST_FLAG1/0 will indicate the software reset after reset. When bSW_RESET is set to 1, if bBOOT_LOAD=1 and bWDOG EN=0, then bRST_FLAG1/0 will keep the reset flag of last time and no new flag.

Bootloader runs first after power-on reset if ISP Bootloader is downloaded, it switches to the application code through software reset based on requirement. This software reset will clear bBOOT_LOAD, but not affect bRST_FLAG1/0 (as bBOOT_LOAD=1 before reset), so bRST_FLAG1/0 still indicates power on reset status after switching to application state.

7.3.4 Watchdog reset

Watchdog reset occurs when the watchdog timer overflows. Watchdog timer is an 8-bit counter, whose

clock frequency is Fsys/131072, and the overflow signal is generated when count to 0FFh and turn to 00h.

Watchdog timer overflow signal will trigger bWDOG_IF_TO to 1, which is automatically reset when WDOG COUNT is reloaded or when it goes into corresponding interrupt service.

Write different initial values to WDOG_COUNT to realize different timing period Twdc. When the system clock is 12MHz, Twdc is about 2.8 s when 00h is written, and about 1.4 s when 80h is written.

When watchdog timer overflows and bWDOG_EN=1, watchdog reset occurs. Auto delay Trdl to keep reset status. CH547 runs from address 0 after delay.

Clear WDOG_COUNT timely to avoid watchdog reset when bWDOG_EN = 1.

8. System clock

8.1 Diagram of clock

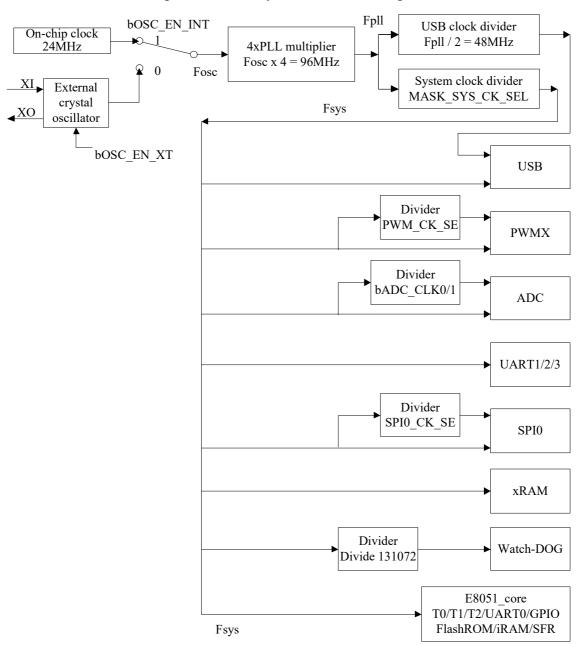


Figure 8.1.1 Clock system and structure diagram

Select one of internal clock or external clock as source clock, then generate high frequency Fpll after frequency multiplier PLL. Generate system clock Fsys and USB module clock Fusb4x after 2 frequency dividers. The system clock Fsys is provided to different modules of CH547 directly.

8.2 Register description

Table 8.2.1 Cl	ock control	register
----------------	-------------	----------

Name	Address	Description	Reset value
CLOCK_CFG	B9h	System clock configuration register	83h

System clock configuration register (CLOCK_CFG), only can be written in safe mode:

Bit	Name	Access	Description	Reset value
7	bOSC_EN_INT	RW	On-chip crystal oscillator enable1: Enable.0: On-chip crystal oscillator disabled and external crystal oscillator enabled	1
6	bOSC_EN_XT	RW	 External crystal oscillator enable 1: Enable, a crystal or ceramic oscillator to XI (P4.6) and XO (P4.7). An external quartz crystal or ceramic oscillator needs to be connected between XI and XO. 0: Disable external oscillator. 	0
5	bWDOG_IF_TO	RO	Watchdog interrupt flag:1: Interrupt from timer overflow.0: No interrupt. This bit will be automatically reset afterWDOG_COUNT reloads or gets into corresponding interrupt service.	0
[4:3]	Reserved	RO	Reserved	00b
[2:0]	MASK_SYS_CK_SEL	RW	System clock frequency selection, refer to Table 8.2.2.	011b

Table 8.2.2 System clock frequency selection

MASK_SYS_CK_SEL	Fsys	Relation with Fxt	Fsys when Fosc=24MHz
000b	Fpll / 512	Fxt / 128	187.5KHz
001b	Fpll / 128	Fxt / 32	750KHz
010b	Fpll / 32	Fxt / 8	3MHz
011b	Fpll / 8	Fxt / 2	12MHz
100b	Fpll / 6	Fxt / 1.5	16MHz
101b	Fpll / 4	Fxt / 1	24MHz
110b	Fpll / 3	Fxt / 0.75	32MHz
111b	Fpll / 2	Fxt / 0.5	48MHz

8.3 Clock configuration

CH547 uses on-chip 24MHz clock by default after power-on. And select on-chip clock or external clock by CLOCK CFG. XI pin may be used as P4.6 general purpose I/O port when external crystal oscillator is

disabled. Connect an oscillator between pins XI and XO when external crystal oscillator is enabled. In addition, connect a oscillating capacitor between XI and GND, XO and GND. When external clock is input directly, connect it to XI and keep XO suspended.

Source clock frequency: Fosc = bOSC EN INT ? 24MHz: Fxt

PLL frequency: Fpll = Fosc * 4

USB clock: Fusb4x = Fpll / 2

System clock frequency (Fsys) is obtained by divided Fpll, please refer to Table 8.2.2.

Default status after reset, Fosc=24MHz, Fpll=96MHz, Fusb4x=48MHz, and Fsys=12MHz.

Steps to switch to external crystal oscillator:

- (1). Get into safe mode, SAFE_MOD = 55h; SAFE_MOD = AAh;
- (2). Set bOSC_EN_XT in CLOCK_CFG to 1 with "OR" operation, other bits remain unchanged, to enable crystal oscillator;
- (3). Delay several milliseconds, usually 5-10mS, to wait oscillator to work steadily;
- (4). Get into safe mode again, SAFE_MOD = 55h; SAFE_MOD = AAh;
- (5). Clear bOSC_EN_INT in CLOCK_CFG to 0 with "AND" operation, other bits remain unchanged, to switch to crystal oscillator;
- (6). Get out of safe mode. Write any value into SAFE_MOD to get out of safe mode.

Steps to modify system frequency:

- (1). Get into safe mode, SAFE_MOD = 55h; SAFE_MOD = AAh;
- (2). Write new value to CLOCK_CFG;
- (3). Get out of safe mode. Write any value into SAFE_MOD to get out of safe mode.

Notes:

- (1). If the USB module is used, Fusb4x must be 48MHz. In addition, when the full speed USB is used, Fsys is not less than 6MHz. When the low speed USB is used, Fsys is not less than 1.5MHz.
- (2). Priority-use-of lower Fsys to reduce dynamic power dissipation and get wider Working temperature.

9. Interrupt

CH547 supports 16 interrupt sources, including 6 interrupts compatible with standard MCS51: INT0, T0, INT1, T1, UART0, T2, and 10 extended interrupts: SPI0, INT3, USB, ADC/UART2, UART1, PWMX/UART3, WDOG, and GPIO which can be selected from 7 I/O pins.

Interrupt service programs are recommended to be as compact as possible, to avoid calling functions and subroutines as well as reading and writing xdata variables and code constants.

Table 9.1.1 List of interrupt vector

Interrupt	Entry	Interrupt	Description	Default priority		
interrupt	address	No.	Description	Default priority		
INT_NO_INT0	0x0003	0	External interrupt 0	High priority		
INT_NO_TMR0	0x000B	1	Timer0 interrupt	\downarrow		
INT_NO_INT1	0x0013	2	External interrupt 1	\downarrow		

9.1 Register description

INT_NO_TMR1	0x001B	3	Timer1 interrupt	\downarrow
INT_NO_UART0	0x0023	4	UART0 interrupt	\downarrow
INT_NO_TMR2	0x002B	5	Timer2 interrupt	\downarrow
INT_NO_SPI0	0x0033	6	SPI0 interrupt	\downarrow
INT_NO_INT3	0x003B	7	External interrupt 3	\downarrow
INT_NO_USB	0x0043	8	USB interrupt	\downarrow
INT_NO_ADC	0x004B	9	ADC interrupt (when bU2IE=0);	Ļ
INT_NO_UART2	0X004D	9	UART2 interrupt (when bU2IE=1)	\downarrow
INT_NO_UART1	0x0053	10	UART1 interrupt	\downarrow
INT_NO_PWMX	0x005B	11	PWMX interrupt (when bU3IE=0);	\downarrow
INT_NO_UART3	0X003B	11	UART3 interrupt (when bU3IE=1)	\downarrow
INT_NO_GPIO	0x0063	12	GPIO Interrupt	Low priority
INT_NO_WDOG	0x006B	13	Watchdog timer interrupt	Low phoney

Table 9.1.2 List of iterrupt registers

Name	Address	Description	Reset value
IP_EX	E9h	Extend interrupt priority register	00h
IE_EX	E8h	Extend interrupt enable register	00h
GPIO_IE	CFh	GPIO interrupt enable register	00h
IP	B8h	Interrupt priority register	00h
INTX	B3h	Extend external interrupt register	00h
IE	A8h	Interrupt enable register	00h

Interrupt enable register (IE):

Interrupt enable register (IE):				
Bit	Name	Access	Description	Reset value
			Global interrupt enable	
7	EA	RW	1:Interrupt is enabled when E_DIS is 0.	0
			0:All interrupt requests are disabled.	
			Global interrupt disable	
			1:All interrupt requests are disabled.	
6	E_DIS	RW	0:Interrupt is enabled when EA is 1.	0
			This bit is usually used to disable interrupt temporarily	
			during flash-ROM operation.	
			Timer2 interrupt enable	
5	ET2	RW	1:T2 interrupt is enabled.	0
			0:T2 interrupt is disabled.	
			UART0 interrupt enable	
4	ES	RW	1:UART0 interrupt is enabled.	0
			0:UART0 interrupt is disabled.	
			Timer1 interrupt enable	
3	ET1	RW	1:T1 interrupt is enabled.	0
			0:T1 interrupt is disabled.	
2	EX1	RW	External interrupt1 enable	0

			1:INT1 interrupt is enabled. 0:INT1 interrupt is disabled.	
1	ET0	RW	Timer0 interrupt enable 1:T0 interrupt is enabled. 0:T0 interrupt is disabled.	0
0	EX0	RW	External interrupt0 enable 1:INT0 interrupt is enabled. 0: INT0 interrupt is disabled.	0

Extend interrupt enable register (IE_EX):

Bit	Name	Access	Description	Reset value
			Watchdog timer interrupt enable	
7	IE_WDOG	RW	1: WDOG interrupt is enabled.	0
			0: WDOG interrupt is disabled.	
			GPIO interrupt enable	
6	IE_GPIO	RW	1: GPIO interrupt is enabled.	0
			0: GPIO interrupt is disabled.	
			PWMX interrupt enable when bU3IE=0:	
			1: PWMX interrupt is enabled.	
5	IE_PWMX	RW	0: PWMX interrupt is disabled.	0
3	IE_UART3	ĸw	UART3 interrupt enable when bU3IE=1:	0
			1: UART3 interrupt is enabled.	
			0: UART3 interrupt is disabled.	
			UART1 interrupt enable	
4	IE_UART1	RW	1: UART1 interrupt is enabled.	0
			0: UART1 interrupt is disabled.	
			ADC interrupt enable when bU2IE=0:	
			1: ADC interrupt is enabled.	
3	IE_ADC	RW	0: ADC interrupt is disabled.	0
3	IE_UART2	KW	UART2 interrupt enable when bU2IE=1:	0
			1: UART2 interrupt is enabled.	
			0: UART2 interrupt is disabled.	
			USB interrupt enable	
2	IE_USB	RW	1: USB interrupt is enabled.	0
			0: USB interrupt is disabled.	
			External interrupt 3 enable	
1	IE_INT3	RW	1: INT3 interrupt is enabled.	0
			0: INT3 interrupt is disabled.	
			SPI0 interrupt enable	
0	IE_SPI0	RW	1: SPI0 interrupt is enabled.	0
			0: SPI0 interrupt is disabled.	

GPIO interrupt enable register (GPIO_IE):

Bit	Name	Access	Description	Reset value
7	bIE_IO_EDGE	RW	 GPIO edge interrupt mode enable: 0: Level interrupt mode. bIO_INT_ACT=1 and interrupt will be requested constantly if there is a valid GPIO input level. Otherwise bIO_INT_ACT=0 and no interrupt request occurs with invalid GPIO input level. 1: Edge interrupt mode. There are interrupt flag bIO_INT_ACT and interrupt requeste with valid GPIO input edge, bIO_INT_ACT cannot be cleared by software, but it is automatically cleared when reset or interrupt program is running in level interrupt mode. 	0
6	bIE_RXD1_LO	RW	1: UART1 RX pin interrupt is enabled (valid with low level in level mode or falling edge in edge mode). 0: UART1 RX pin interrupt is disabled. Select RXD1 or RXD1_ according to bUART1_PIN_X=0/1.	0
5	bIE_P1_5_LO	RW	 P1.5 interrupt is enabled (valid with low level in level mode or falling edge in edge mode). P1.5 interrupt is disabled. 	0
4	bIE_P1_4_LO	RW	 P1.4 interrupt is enabled (valid with low level in level mode or falling edge in edge mode). P1.4 interrupt is disabled. 	0
3	bIE_P0_3_LO	RW	 P0.3 interrupt is enabled (valid with low level in level mode or falling edge in edge mode). P0.3 interrupt is disabled. 	0
2	bIE_P5_7_HI	RW	 P5.7 interrupt is enabled (valid with high level in level mode or rising edge in edge mode). P5.7 interrupt is disabled. 	0
1	bIE_P4_6_LO	RW	 P4.6 interrupt is enabled (valid with low level in level mode or falling edge in edge mode). P4.6 interrupt is disabled. 	0
0	bIE_RXD0_LO	RW	1: UARTO RX pin interrupt is enabled (valid with low level in level mode or falling edge in edge mode). 0: UARTO RX pin interrupt is disabled. Select RXD0 or RXD0_ based on bUART0_PIN_X=0/1.	0

Extend external interrupt register (INTX):

Bit	Name	Access	Description	Reset value
7	Reserved	RO	Reserved	0
6	Reserved	RO	Reserved	0
5	bIX3	RW	INT3 Input signal polarity	0

			0: Default polarity (triggered by low level or falling	
			edge).	
			1: Reverse polarity (triggered by high level or rising	
			edge).	
4	Reserved	RO	Reserved	0
3	bIE3	RW	INT3 interrupt request flag	0
5	01E5	IX VV	Auto reset after it enters interrupt.	0
			INT3 trigger mode control	
2	bIT3	RW	0: Triggered by low or high level.	0
			1: triggered by falling or rising edge.	
1	Reserved	RO	Reserved	0
0	Reserved	RO	Reserved	0

Interrupt priority register (IP):

Bit	Name	Access	Description	Reset value
7	PH_FLAG	RO	High priority interrupt running flag	0
6	PL_FLAG	RO	Low priority interrupt running flag	0
5	PT2	RW	Timer2 interrupt priority control bit	0
4	PS	RW	UART0 interrupt priority control bit	0
3	PT1	RW	Timer1 interrupt priority control bit	0
2	PX1	RW	External interrupt 1 priority control bit	0
1	PT0	RW	Timer0 interrupt priority control bit	0
0	PX0	RW	External interrupt 0 priority control bit	0

Extend interrupt priority register (IP_EX):

Bit	Name	Access	Description	Reset value
7	bIP_LEVEL	RO	 Current interrupt nesting level flag 0: No interrupt or dual interrupt nesting. 1: Single interrupt nesting. 	
6	bIP_GPIO	RW	GPIO interrupt priority control	0
5	bIP_PWMX bIP_UART3	RW	PWMX interrupt priority control bit when bU3IE=0. UART3 interrupt priority control bit when bU3IE=1	0
4	bIP_UART1	RW	UART1 interrupt priority control bit	0
3	bIP_ADC bIP_UART2	RW	ADC interrupt priority control bit when bU2IE=0. UART2 interrupt priority control bit when bU2IE=1.	0
2	bIP_USB	RW	USB interrupt priority control bit	0
1	bIP_INT3	RW	External interrupt 3 interrupt priority control bit	0
0	bIP_SPI0	RW	SPI0 interrupt priority control bit	0

IP and IP_EX registers are used to set the interrupt priority. The corresponding interrupt source will be high (low) priority if this bit is 1 (0). There is default priority order (refer to Table 9.1.1) for interrupt sources in the same level, the current interrupt priority is shown by PH_FALG combined with PL_FLAG.

PH_FLAG	PL_FLAG	Interrupt priority state at present	
0 0		No interrupt at present	
0	1	Low priority interrupt is running at present	
1	0	High priority interrupt is running at present	
1	1	Unexpected event, unknown error	

Table 9.1.3 Current interrupt priority description

10. I/O Port

10.1 GPIO introduction

CH547 provides up to 44 I/O pins. Some of them have alternate functions. P0-P4 input&output can be addressing by bit.

The pins are general I/O port state if not set reused. All I/O ports have real "read-change-write" function and support SETB or CLR command to change the direction and level of pins while they are used as general digital I/O pins.

10.2 GPIO register

All registers and bits in this section are generally expressed: "n" (n=0, 1, 2, 3, 4) to express the serial number of ports, and "x" (x=0, 1, 2, 3, 4, 5, 6, 7) to express the serial number of bits..

Name	Address	Description	Reset value
PO	80h	P0 input/output register	FFh
P0_DIR_PU	C5h	P0 direction control and pull-up enable register	FFh
P0_MOD_OC	C4h	P0 output mode register	FFh
P1	90h	P1 input/output register	FFh
P1_DIR_PU	93h	P1 direction control and pull-up enable register	FFh
P1_MOD_OC	92h	P1 output mode register	FFh
P2	A0h	P2 input/output register	FFh
P2_DIR_PU	95h	P2 direction control and pull-up enable register	FFh
P2_MOD_OC	94h	P2 output mode register	FFh
P3	B0h	P3 input/output register	FFh
P3_DIR_PU	97h	P3 direction control and pull-up enable register	FFh
P3_MOD_OC	96h	P3 output mode register	FFh
P4	C0h	P4 input/output register	FFh
P4_DIR_PU	C3h	P4 direction control and pull-up enable register	FFh
P4_MOD_OC	C2h	P4 output mode register	FFh
P5	ABh	P5 input/output register	20h
PIN_FUNC	AAh	Pin function selection register	00h
XBUS_AUX	A2h	Bus auxiliary setting register	00h

Table 10.2.1 List of GPIO registers

Pn input/output register (Pn):

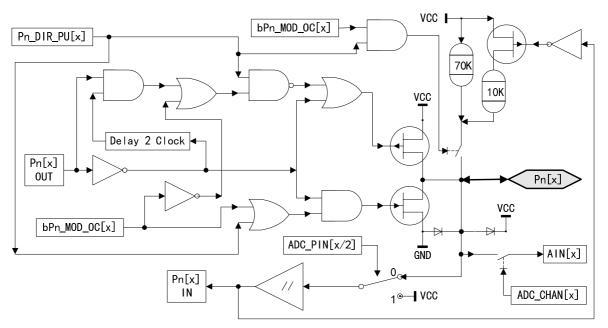
Bit	Name	Access	Description	Reset value
[7:0]	Pn.0~Pn.7	RW	Pn.x pin state input and data output bits, support addressing by bit. Notes: P4.7 is the internal bit, the write operation must be set to 1, and the read operation is meaningless	FFh

Pn output mode register (Pn_MOD_OC):

Bit	Name	Access	Description	Reset value
[7:0]	Pn_MOD_OC	RW	Pn.x pin output mode setting:0: Push-pull output.1: Open-drain output.	FFh

Pn direction control and pull-up enable register (Pn_DIR_PU):

Bit	Name	Access	Description	Reset value
[7:0]	Pn_DIR_PU	RW	 Pn.x direction control in push-pull output mode: 0: Input. 1: Output. Pn.x pull-up resistor enable control in open-drain output mode: 0: Disable the pull-up resistor. 1: Enable the pull-up resistor; 	FFh


Port Pn configuration is realized by Pn_MOD_OC[x] and Pn_DIR_PU[x], details as follows.

Pn_MOD_OC	Pn_DIR_PU	Description of working mode
0	0	High impedance input mode, pins without pull-up resistor
0	1	Push-pull output mode with symmetry driving ability, a port can output or absorb large current in this mode
1	0	Open-drain output, support high impedance input, pins without pull-up resistor
1	1	Standard bi-direction mode (standard 8051), open-drain output, support input, pins with pull-up resistor. It will automatically generate 2 clock period of high level to accelerate conversion when output transfer from low level to high level

Table 10.2.2 Port	configuration	register	combination
Table 10.2.2 Fold	configuration	register	combination

Ports P1-P4 support pure input, push-pull output and standard bi-direction modes. Each pin has a controllable internal pull-up resistor, and a protection diode attached to VDD and GND.

Figure 10.2.1 shows pins P0.x of port P0 and pins P1.x of port P1, also suitable for ports P2, P3 and P4 without AIN, ADC_PIN or ADC_CHAN.

Figure 10.2.1 Equivalent schematic diagram of I/O pins

P5 input/output register (P5):

Bit	Name	Access	Description	Reset value
7	P5.7	R0	P5.7 pin state input bit	0
6	Reserved	RO	Reserved	0
5	P5.5	RW	 P5.5 pin data output bit (open-drain output, supports high voltage): 0: Output low level. 1: No output (high impedance, supports external pull-up resistor). 	
4	P5.4	RW	P5.4 pin data output bit:0: Output low level.1: Output high level.	0
3	Reserved	RO	Reserved	0
2	Reserved	RO	Reserved	0
1	P5.1	R0	P5.1 pin state input bit, built-in controllable pull-down resistor	0
0	P5.0	R0	P5.0 pin state input bit, built-in controllable pull-down resistor	0

10.3 GPIO alternate functions and mapping

Some of CH547 I/O pins have alternate functions, and are general I/O pins by default after power on. After different function modules are enabled, they are set corresponding pins id used as corresponding function pins.

Pin function selection register (PIN_FUNC):

Bit	Name	Access	Description	Reset
				value
			PWM0 pin mapping enable	
7	bPWM0_PIN_X	RW	0: PWM0 enables P2.5.	0
			1: PWM0 enables P1.5.	
			GPIO interrupt request activation state:	
			When bIE_IO_EDGE=0,	
			1: GPIO with valid level and interrupt request.	
			0: GPIO with invalid level.	
6	bIO INT ACT	R0	When bIE_IO_EDGE=1, this bit is used as edge	0
0		Ro	interrupt flag,	Ū
			1: Valid edge is detected and this bit cannot be reset by	
			software, but can only be reset automatically when reset	
			or in level interrupt mode or when it enters	
			corresponding interrupt service program.	
			UART1 pin mapping enable	
5	bUART1_PIN_X	RW	0: RXD1/TXD1 enable P2.6/P2.7.	0
			1: RXD1/TXD1 enable P1.6/P1.7.	
			UART0 pin mapping enable	
4	bUART0_PIN_X	RW	0: RXD0/TXD0 enable P3.0/P3.1.	0
			1: RXD0/TXD0 enable P0.2/P0.3.	
3	Reserved	RO	Reserved	0
			INT0 pin mapping enable	
2	bINT0_PIN_X	RW	0: INT0 enables P3.2.	0
			1: INT0 enables P2.2.	
			T2EX/CAP2 pin mapping enable	
1	bT2EX_PIN_X	RW	0: T2EX/CAP2 enables P1.1.	0
			1: T2EX/CAP2 enables P2.5.	
			T2 pin mapping enable	
0	bT2_PIN_X	RW	0: T2 enables P1.0.	0
			1: T2 enables P2.4.	

Table 10.3.1 List of GPIO pins alternate functions

GPIO	Other functions: left-to-right priority		
P0[0]	AIN8, P0.0		
P0[1]	AIN9, P0.1		
P0[2]	RXD_/bRXD_, AIN10, P0.2		
P0[3]	TXD_/bTXD_, AIN11, P0.3		
P0[4]	RXD2/bRXD2, P0.4		
P0[5]	TXD2/bTXD2, P0.5		
P0[6]	RXD3/bRXD3, P0.6		
P0[7]	TXD3/bTXD3, P0.7		
P1[0]	T2/bT2, AIN0, P1.0		

I	
P1[1]	T2EX/bT2EX, CAP2/bCAP2, AIN1, P1.1
P1[2]	AIN2, P1.2
P1[3]	AIN3, P1.3
P1[4]	SCS/bSCS, AIN4, P1.4
P1[5]	MOSI/bMOSI, PWM0_/bPWM0_, AIN5, P1.5
P1[6]	MISO/bMISO, RXD1_/bRXD1_, AIN6, P1.6
P1[7]	SCK/bSCK, TXD1_/bTXD1_, AIN7, P1.7
P2[0]	P2.0
P2[1]	P2.1
P2[2]	PWM3/bPWM3, INT0_/bINT0, P2.2
P2[3]	PWM2/bPWM2, P2.3
P2[4]	PWM1/bPWM1, T2_/bT2_, P2.4
P2[5]	PWM0/bPWM0, T2EX_/bT2EX_, CAP2_/bCAP2_, P2.5
P2[6]	RXD1/bRXD1, P2.6
P2[7]	TXD1/bTXD1, P2.7
P3[0]	RXD/bRXD, P3.0
P3[1]	TXD/bTXD, P3.1
P3[2]	INT0/bINT0, P3.2
P3[3]	INT1/bINT1, P3.3
P3[4]	Т0/ЬТ0, Р3.4
P3[5]	T1/bT1, P3.5
P3[6]	P3.6
P3[7]	INT3/bINT3, P3.7
P4[0]	P4.0
P4[1]	P4.1
P4[2]	P4.2
P4[3]	P4.3
P4[4]	P4.4
P4[5]	P4.5
P4[6]	XI, P4.6
P5[0]	UDM/bUDM, P5.0
P5[1]	UDP/bUDP, P5.1
P5[4]	bALE/bCKO, P5.4
P5[5]	bHVOD, P5.5
P5[7]	RST/bRST, P5.7
E	

The left-to-right priority shown in table above is the priority of some modules competing for using GPIO. For example, P1.6/P1.7 is set for UART1_, then P1.7 can still be used for SCK in higher priority if only RXD1_ is needed.

11. External bus (xBUS)

CH547 does not provide bus signals for the external, does not support external bus, but the on-chip xRAM can be normally accessed.

Bit	Name	Access	Description	Reset value
7	bUART0_TX	R0	UART0 Tx state 1: It is transmitting.	0
6	bUART0_RX	R0	UART0 Rx state 1: It is receiving.	0
5	bSAFE_MOD_ACT	R0	Safe mode state 1: It is in safe mode.	0
4	bALE_CLK_EN	RW	ALE pin clock output enable1: Enable P5.4 output divided system frequency.0: Clock signal is disabled.	0
3	bALE_CLK_SEL	RW	When bALE_CLK_EN=1, ALE pin clock frequency is selected; If the bit is 0, select 12 frequency division. If the bit is 1, select 4 frequency division	0
3	GF2	RW	General flag bit 2 when bALE_CLK_EN=0: User-defined. Can be reset and set by software.	0
2	bDPTR_AUTO_INC	RW	Enable DPTR add by 1 automatically after MOVX_@DPTR command.	0
1	Reserved	RO	Reserved	0
0	DPS	RW	Dual DPTR data pointer selection: 0: DPTR0. 1: DPTR1.	0

External bus auxiliary configuration register (XBUS_AUX):

Table 11.1 P5.4 alternate ALE/CKO output state

P5[4]	bALE_CLK_EN	bALE_CLK_SEL	P5.4 pin function description
0	0	0	Output low level (default)
0	1	0	Fsys/12
0	1	1	Fsys/4
1	X	Х	Output high level

12. Timer

12.1 Timer0/1

Timer0 and Timer1 are 16-bit timers/counters, which are configured by TCON and TMOD. TCON is used for T0 and T1 startup control and overflow interrupt as well as external interrupt control. Each timer is a 16-bit timing unit composed of 2 8-bit registers. High byte counter of Timer0 is TH0, and low byte is TL0. High byte counter of Timer1 is TH1, and low byte is TL1. Timer1 may also be used for UART0 baud rate generator.

-	6			
Name	Address	Description	Reset value	
TH1	8Dh	Timer1 count high byte	xxh	

TH0	8Ch	Timer0 count high byte	xxh
TL1	8Bh	Timer1 count low byte	xxh
TL0	8Ah	Timer0 count low byte	xxh
TMOD	89h	Timer0/1 mode register	00h
TCON	88h	Timer0/1 control register	00h

Timer/counter 0/1 control register (TCON):

Bit	Name	Access	Description	Reset value
7	TF1	RW	Timer1 overflow interrupt flag	0
6	TR1	RW	Auto reset after it enters Timer1 interrupt service. Timer1 startup/stop bit	0
5	TF0	RW	Set 1 to start. Set and reset by software. Timer0 overflow interrupt flag Auto reset after it enters Timer0 interrupt.	0
4	TR0	RW	Timer0 startup/stop bit Set 1 to start. Set and reset by software.	0
3	IE1	RW	INT1 interrupt request flag Auto reset after it enters interrupt.	0
2	IT1	RW	INT1 trigger mode control 0: Low level action. 1: Falling edge action.	0
1	IEO	RW	INT0 interrupt request flag Auto reset after it enters interrupt.	0
0	IT0	RW	INT0 trigger mode control 0: Low level action. 1: Falling edge action.	0

Timer/counter 0/1 mode register (TMOD):

Bit	Name	Access	Description	Reset value
7	bT1_GATE	RW	Gate control Timer1: 0: Whether Timer1 is started is independent of INT1. 1: Timer1 run enable while INT1 pin is high and TR1 is 1.	0
6	bT1_CT	RW	Counter or timer mode selection for Timer1: 0: Timer, use internal clock. 1: Counter, use T1 pin falling edge as clock	0
5	bT1_M1	RW	Timer1 mode high bit	0
4	bT1_M0	RW	Timer1 mode low bit	0
3	bT0_GATE	RW	Gate control Timer0: 0: Whether Timer 0 is started is independent of INT0. 1: Timer0 run enable while INT0 pin is high and TR0 is 1.	0

2	bT0_CT	RW	Counter or timer mode selection for Timer0: 0: Timer, use internal clock, 1: Counter, use T0 pin falling edge as clock.	0
1	bT0_M1	RW	Timer0 mode high bit	0
0	bT0_M0	RW	Timer0 mode low bit	0

Table 12.1.2 List of Timern working mode (n=0,1)

bTn_M1	bTn_M0	Timern working mode (n=0,1)
		Mode0: 13-bit timer or counter n by cascaded THn and lower 5 bits of TLn, the upper
0	0	3 bits of TLn are ignored. When the counts of all 13 bits change from 1 to 0, set the
		overflow flag TFn and reset the initial value.
0	1	Mode1: 16-bit timer or counter n by cascaded THn and TLn. When the counts of all
0	1	16 bits change from 1 to 0, set the overflow flag TFn and reset the initial value.
		Mode2: 8-bit overload timer/counter n, TLn is used for count unit, and THn is used as
1	0	the overload count unit. When the counts of all 8 bits change from 1 to 0, set the
		overflow flag TFn and automatically load the initial value from THn.
		Mode3: For timer0, it is divided into TL0 and TH0. TL0 is used as an 8-bit
		timer/counter, occupying all control bits of Timer0. TH0 is also used as an 8-bit timer,
1	1	occupying TR1, TF1 and interrupt resources of Timer1. In this case, Timer1 is still
		available, but the startup control bit TR1 and overflow flag bit TF1 cannot be used.
		For timer 1, it stops after it enters mode3.

Timern count low byte (TLn) (n=0, 1):

Bit	Name	Access	Description	Reset value
[7:0]	TLn	RW	Timern count low byte	xxh

Timern count high byte (THn) (n=0, 1):

Bit	Name	Access	Description	Reset value
[7:0]	THn	RW	Timern count high byte	xxh

12.2 Timer2

Timer2 is a 16-bit auto-reload timer/counter, configured by T2CON and T2MOD. High byte if Timer2 is TH2, and low byte is TL2. Timer2 may be used as UART0 baud rate generator, and provide 3-channel level capture. The capture value is stored in the RCAP2 register.

Name	Address	Description	Reset value
TH2	CDh	Timer2 count high byte	00h
TL2	CCh	Timer2 count low byte	00h
T2COUNT	CCh	16-bit SFR consists of TL2 and TH2	0000h
RCAP2H	CBh	Count reload/capature 2 data register high byte	00h
RCAP2L	CAh	Count reload/capature 2 data register low byte	00h

RCAP2	CAh	16-bit SFR consists of RCAP2L and RCAP2H	0000h
T2MOD	C9h	Timer2 mode register	00h
T2CON	C8h	Timer2 control register	00h

Timer/counter2 contro	l register	(T2CON):
-----------------------	------------	----------

Bit	Name	Access	Description	Reset value
7	TF2	RW	Timer2 overflow interrupt flag Set to 1 when the counts of all 16 bits of Timer2 change from 1 to 0. Reset by software. This bit will not be set when either RCLK=1 or TCLK=1.	0
6	EXF2	RW	Timer2 external trigger flag Set by T2EX edge trigger when EXEN2=1. Reset by software.	0
5	RCLK	RW	UART0 Rx clock selection 0: Timer1 overflow pulse. 1: Timer2 overflow pulse.	0
4	TCLK	RW	UART0 Tx clock selection 0: Timer1 overflow pulse. 1: Timer2 overflow pulse.	0
3	EXEN2	RW	T2EX trigger enable0: Ignore T2EX.1: Enable trigger reload or capture by T2EX edge.	0
2	TR2	RW	Timer2 startup/stop bit Set 1 to start. Set and reset by software.	0
1	C_T2	RW	Timer2 clock source selection 0: Internal clock. 1: Edge counter based on T2 falling edge.	0
0	CP_RL2	RW	Timer2 function selection (forced 0 if RCLK or TCLK is 1). 0: Timer and auto reload if count overflow or T2EX edge. 1: Capture by T2EX edge.	0

Timer/counter 2 mode register (T2MOD):

Bit	Name	Access	Description	Reset value
7	bTMR_CLK	RW	Fastest internal clock mode for T0/T1/T2 under faster clock mode:0: Use divided clock.1: Use original Fsys as clock without dividing.This bit has no effect on selecting standard clock timer	0
6	bT2_CLK	RW	Timer2 internal clock frequency selection: 0: Standard clock, Fsys/12 for timer mode, Fsys/4 for	0

				mada	
			UART0 clock		
				, Fsys/4 $@bTMR_CLK = 0$ or	
			Fsys @bTMR_	CLK = 1 for timer mode,	
			Fsys/2 @bTM	$R_CLK = 0$ or Fsys @bTMR_CLK = 1	
			for UART0 clo	ock mode.	
			Timer1 interna	l clock frequency selection:	
5		DW	0 = Standard c	lock, Fsys/12.	0
5	bT1_CLK	RW	1 = Faster cloc	ck, Fsys/4 if bTMR CLK = 0, or Fsys if	0
			bTMR_CLK =	= 1.	
			Timer0 interna	l clock frequency selection:	
		DIII	0 = Standard c	lock, Fsys/12.	0
4	bT0_CLK	RW	1 = Faster cloc	ck, Fsys/4 if bTMR $CLK = 0$, or Fsys if	0
			bTMR CLK =	= 1.	
			Timer2	Capture mode selection:	
3	bT2 CAP M1	RW	capture mode	X0: from falling ege to falling edge.	0
			high bit	01: from any edge to any edge (level	
			Timer2	change).	
2	bT2 CAP M0	RW	capture mode	11: from rising edge to rising edge.	0
			low bit		
			Timer2 clock o	butput enable	
1	T2OE	RW	0: Disable outp	•	0
-			-	k output at T2 pin, frequency = TF2/2.	÷
0	Reserved	RO	Reserved	a carpar at 12 pm, nequency 112/2.	0

Count reload/capature 2 data register (RCAP2):

Bit	Name	Access	Description	Reset value
[7:0]	RCAP2H	RW	High byte of reload value in timer/counter mode. High byte of timer captured by CAP2 in capture mode.	00h
[7:0]	RCAP2L	RW	Low byte of reload value in timer/counter mode. Low byte of timer captured by CAP2 in capture mode	00h

Timer2 counter (T2COUNT):

Bit	Name	Access	Description	Reset value
[7:0]	TH2	RW	Counter high byte	00h
[7:0]	TL2	RW	Counter low byte	00h

12.3 PWM register

The PWM_DATA register in this section is represented in a generic format: "n" (n=0-3) to represent the serial number of ports.

Table 12.3.1 List of PWMX registers

Name	Address	Description	Reset value
PWM_CK_SE	9Eh	PWM clock divisor setting register	00h

PWM_CTRL	9Dh	PWM control register	02h
PWM_CTRL2	9Fh	PWM extend control register	00h
PWM_DATA0	9Ch	PWM0 data register	xxh
PWM_DATA1	9Bh	PWM1 data register	xxh
PWM_DATA2	9Ah	PWM2 data register	xxh
PWM_DATA3	A3h	PWM3 data register	xxh

PWMn data register (PWM_DATAn):

Bit	Name	Access	Description	Reset value
[7:0]	PWM_DATAn	RW	Store PWMn data PWMn duty cycle =PWM_DATAn/PWM_CYCLE	xxh

PWM control register (PWM_CTRL):

Bit	Name	Access	Description	Reset value
7	Reserved	RO	Reserved	0
6	bPWM1_POLAR	RW	PWM1 output polarity control0: Default low and active high.1: Default high and active low.	0
5	bPWM0_POLAR	RW	PWM0 output polarity control0: Default low and active high.1: Default high and active low.	0
4	bPWM_IF_END	RW	PWM cycle end interrupt flag 1:There is a PWM cycle end interrupt. Write 1 to reset, or reload PWM_DATA0 data to reset.	0
3	bPWM1_OUT_EN	RW	PWM1 output enable 1: Enable PWM1 output.	0
2	bPWM0_OUT_EN	RW	PWM0 output enable 1: Enable PWM0 output.	0
1	bPWM_CLR_ALL	RW	1: Clear PWM count and FIFO. Reset by software.	1
0	bPWM_MOD_6BIT	RW	PWM data width mode:0: 8-bit data, and PWM cycle is 256.1: 6-bit data, and PWM cycle is 64.	0

PWM extend control register (PWM_CTRL2):

Bit	Name	Access	Description	Reset value
7	Reserved	RO	Reserved	0
6	Reserved	RO	Reserved	0
5	Reserved	RO	Reserved	0
4	Reserved	RO	Reserved	0
3	Reserved	RO	Reserved	0
2	Reserved	RO	Reserved	0

1	bPWM3_OUT_EN	RW	PWM3 output enable 1: Enable PWM3 output.	0
0	bPWM2_OUT_EN	RW	PWM2 output enable 1: Enable PWM2 output.	0

PWM clock divisor setting register (PWM_CK_SE):

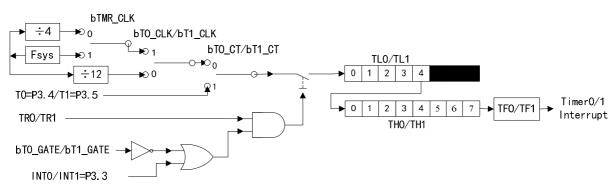
Bit	Name	Access	Description	Reset value
[7:0]	PWM_CK_SE	RW	Set PWM clock frequency division factor	00h

12.4 PWM

CH547 provides 4-channel PWM, while CH546 only provides 2-channel PWM (PWM0 and PWM1). The output duty cycle of PWM can be dynamically modified. The wanted output voltages can be obtained after a simple RC circuit just like a low speed DAC. PWM0 and PWM1 can also select the reserve polarity output and default output polarity as low level or high level.

PWM_CYCLE = bPWM_MOD_6BIT ? 64 : 256 PWMn output duty cycle =PWM_DATAn / PWM_CYCLE

Duty cycle ranges from 0% to 99.6% in 8-bit data mode, and ranges from 0% to 100% in 6-bit data mode (duty cycle = 100% if PWM_DATAn > PWM_CYCLE).


Suggestion: enable PWM output and set push-pull in application.

12.5 Timer

12.5.1 Timer0/1

Mode0: 13-bit timer/counter

- (1). Set T2MOD to select Timer internal clock frequency. Timer0/1 frequency is Fsys/12 when bTn CLK(n=0/1) is 0, Fsys/4 when bTMR CLK=0 and Fsys when bTMR CLK=1 if bTn CLK=1.
- (2). Set TMOD to configure Timer working mode.

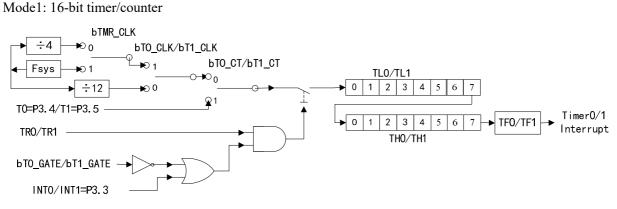


Figure 12.5.1.2 Timer0/1 mode1

Mode2: auto reload 8-bit timer/counter

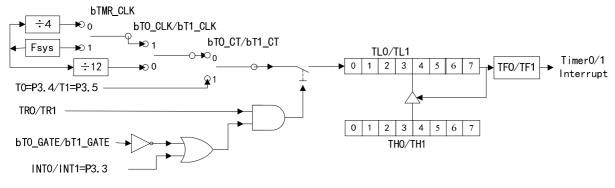


Figure 12.5.1.3 Timer0/1 mode2

Mode3: Timer0 is divided into 2 separate 8-bit timer/counter, and borrowed TR1 of Timer1. Timer1 substitutes the borrowed TR1 control bit by whether starting mode3. Timer1 stops when it gets into mode3.

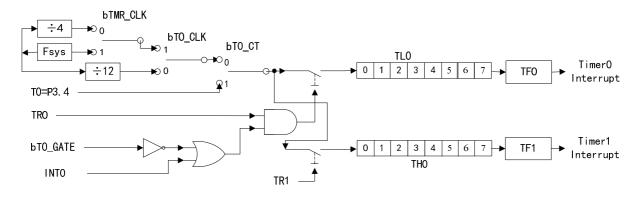


Figure 12.5.1.4 Timer0 mode3

- (3). Set timer/counter initial value TLn and THn (n=0/1).
- (4). Set TRn (n=0/1) in TCON to enable or disable timer/counter, and check through TFn(n=0/1) or interrupt mode.

12.5.2 Timer2

Timer2 16-bit reload timer/counter mode:

- (1). Clear RCLK and TCLK in T2CON to 0, to select non-baud rate generator mode.
- (2). Clear C T2 in T2CON to 0, to use internal clock, and jump to step (3). Or set it to 1 to select T2

falling edge as the count clock and skip step (3).

- (3). Set T2MOD to select Timer internal clock. Timer2 frequency is Fsys/12 when bT2_CLK=0, Fsys/4 when bTMR_CLK=0 and Fsys when bTMR_CLK=1 if bT2_CLK=1.
- (4). Clear CP RL2 in T2CON to 0, to select Timer216-bit reload timer/counter function.
- (5). Set RCAP2L and RCAP2H as reload value when timer overflows, set TL2 and TH2 as initial value (generally the same as RCAP2L and RCAP2H), set TR2 to 1 and enable Timer2.
- (6). Read TF2 or Timer2 interrupt to get current timer/counter status.

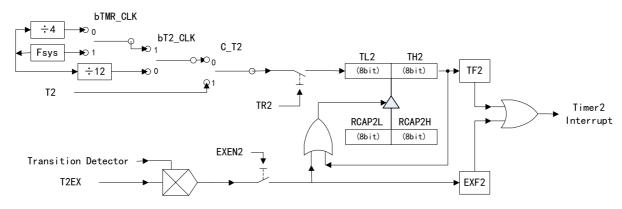


Fig.12.5.2.1 Timer2 16-bit reload timer/counter

Timer2 clock output mode:

Refer to 16-bit reload timer/counter mode, set T2OE in T2MOD to 1 to enable pin T2 output clock of half TF2 frequency.

Timer2 UART0 baud rate generator mode:

- (1). Clear C_T2 in T2CON to 0, to select internal clock. Or set it to 1 to select T2 falling edge as clock, set RCLK and TCLK in T2CON to 1 or set one of them to 1 as required, to select UART baud rate generator mode.
- (2). Set T2MOD to select Timer internal clock frequency. Timer2 frequecy is Fsys/4 if bT2_CLK is 0, Fsys/2 when bTMR_CLK=0 or Fsys when bTMR_CLK=1 if bT2_CLK=1.
- (3). Set RCAP2L and RCAP2H as reload value after timer overflows, set TR2 to 1 and enable Timer2.

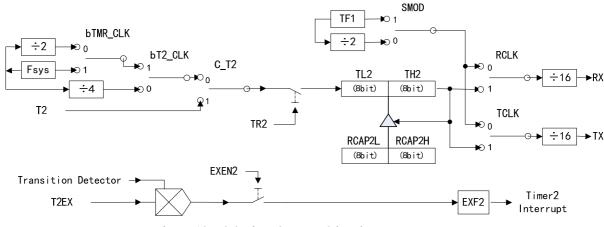


Figure 12.5.2.2 Timer2 UART0 baud rate generator

Timer2 signal channel capture mode:

(1). Clear RCLK and TCLK in T2CON to 0, to select non-baud rate generator mode.

(2). Clear C T2 in T2CON to 0 to select internal clock, and jump to step (3). Or set it to 1 to select T2

falling edge as the count clock and skip step (3).

- (3). Set T2MOD to select Timer internal clock frequency. Timer2 clock is Fsys/12 if bT2_CLK=0, Fsys/4 when bTMR_CLK=0 or Fsys when bTMR_CLK=1 if bT2_CLK=1.
- (4). Set bT2_CAP_M1 and bT2_CAP_M0 in T2MOD, to select corresponding edge capture mode.
- (5). Set CP_RL2 in T2CON to 1, to select T2EX pin capture function of Timer2.
- (6). Set TL2 and TH2 as initial value of the timer, and set TR2 to 1 to enable Timer2.
- (7). At the end of CAP2 capture, RCAP2L and RCAP2H keep TL2 and TH2 value, set EXF2 to trigger interrupt. The signal width of 2 valid edges is the difference between last time capturing of RCAP2L / RCAP2H and next.

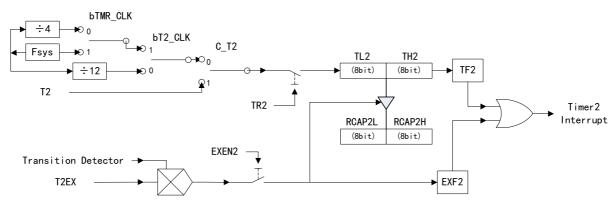


Figure 12.5.2.3 Timer2 capture mode

13. Universal asynchronous receiver-transmitter (UART)

13.1 UART introduction

CH547 provides 4 full-duplex UARTs: UART0-UART3. CH546 only provides UART0.

UART0 is a standard MCS51 UART, which receives and transmits data through SBUF access physically separated receive/transmit registers. The data written to SBUF is loaded into the transmit register, and the receive register is used for read operation on SBUF.

UART1 is a simplified MCS51 UART, which receives and transmits data through SBUF access physically separated receive/transmit registers. The data written to SBUF1 is loaded into the transmit register, and the receive register is used for read operation on SBUF1. Compared with UART0, UART1 lacks multi-device communication mode and fixed baud rate, but has independent baud rate generator.

UART2 adds an interrupt enable bit on the basis of UART1 to replace ADC interrupt.

The same as UART2, UART3 also adds an interrupt enable bit on the basis of UART1, to replace PWMX interrupt.

Name	Address	Description	Reset value
SBUF	99h	UART0 data register	xxh
SCON	98h	UART0 control register	00h
SCON1	BCh	UART1 control register	40h
SBUF1	BDh	UART1 data register	xxh

13.2 UART register

Table 13.2.1	List of UART	registers
--------------	--------------	-----------

SBAUD1	BEh	UART1 baud rate setting register	xxh
SIF1	BFh	UART1 interrupt status register	00h
SCON2	B4h	UART2 control register	00h
SBUF2	B5h	UART2 data register	xxh
SBAUD2	B6h	UART2 baud rate setting register	xxh
SIF2	B7h	UART2 interrupt status register	00h
SCON3	ACh	UART3 control register	00h
SBUF3	ADh	UART3 data register	xxh
SBAUD3	AEh	UART3 baud rate setting register	xxh
SIF3	AFh	UART3 interrupt status register	00h

13.2.1 UART0 register description

UART0 control register (SCON):

Bit	Name	Access	Description	Reset value
			UART0 mode bit0, data bit selection:	
7	SM0	RW	0: 8-bit data.	0
			1: 9-bit data.	
			UART0 mode bit1, baud rate selection:	
6	SM1	RW	0: Fixed.	0
			1: Variable, generated by T1 or T2.	
			UART0 multi-device communication control:	
			When receiving data in mode2 and mode3:	
			1: RI is not set to 1 and the reception is invalid if	
			RB8 is 0; RI is set to 1 and the reception is valid if	
			RB8 is 1.	
5	SM2	RW	0: RI is set when receiving and the reception is	0
			valid no matter RB8 is 0 or 1.	
			In mode1:	
			1: Reception is only valid when receiving valid	
			stop bit.	
			In mode0, SM2 must be set to 0.	
			UART0 receive enable	
4	REN	RW	0: Disable.	0
			1: Enable.	
			The 9 th transmitted data bit in mode2/3, can be a	
			parity bit.	
3	TB8	RW	In multi-device communication, it indicates whether	0
			the host sends an address byte or a data byte, data	
			byte when TB8=0, and address byte when TB8=1.	
			The 9 th bit received data bit in mode2/3. In mode 1,	
2	RB8	RW	RB8 is used to store the received stop bit if SM2=0.	0
			In mode 0, RB8 is not used.	
1	TI	RW	Transmit interrupt flag, set by hardware after	0

|--|

			completion of a serial transmittal. Cleared by software.	
0	RI	RW	Receive interrupt flag, set by hardware after completion of a serial receiving. Cleared by software.	0

SM0	SM1	Description
0	0	Mode0, shift register, baud rate fixed to: Fsys/12.
0	1	Mode1, 8-bit UART, baud rate = variable by timer1 or timer2 overflow rate.
1	0	Mode2, 9-bit UART, baud rate fixed to: Fsys/128@SMOD=0, Fsys/32@SMOD=1.
1	1	Mode3, 9-bit UART, baud rate = variable by timer1 or timer2 overflow rate.

In mode1 and mode3, UART0 baud rate is generated by T1 when RCLK=0 and TCLK=0. Set T1 in mode2 auto reload 8-bit timer, clear bT1_CT and bT1_GATE, as follow:

bTMR_CLK	bT1_CLK	SMOD	Description
1	1	0	TH1 = 256 - Fsys / 32 / baud rate
1	1	1	TH1 = 256 - Fsys / 16 / baud rate
0	1	0	TH1 = 256 - Fsys / 4 / 32 / baud rate
0	1	1	TH1 = 256 - Fsys / 4 / 16 / baud rate
Х	0	0	TH1 = 256 - Fsys / 12 / 32 / baud rate
Х	0	1	TH1 = 256 - Fsys / 12 / 16 / baud rate

Table 13.2.1.2 Calculation formula of UART0 baud rate

In mode1 and3, UART0 baud rate is generated by T2 when RCLK=1 and TCLK=1. Set T2 in mode2 auto reload 16-bit timer, clear C_T2 and CP_RL2, as follow:

bTMR_CLK	bT2_CLK	Description					
1	1	RCAP2 = 65536 - Fsys / 16 / baud rate					
0	1	RCAP2 = 65536 - Fsys / 2 / 16 / baud rate					
Х	0	RCAP2 = 65536 - Fsys / 4 / 16 / baud rate					

Table 13.2.1.3 Calculation formula of UART0 baud rate

UART0 data register (SBUF):

Bit	Name	Access	Description	Reset value
[7:0]	SBUF	RW	UART0 data register, including physically separated transmit register and receive register. The transmit register is used to write data to SBUF. The receive register is used to read data from SBUF.	xxh

13.2.2 UART1 register description

UART1 control register (SCON1):

Bit	Name	Access	Description	Reset value
			UART1 working mode selection	
7	bU1SM0	RW	0: 8-bit data.	0
			1: 9-bit data.	
6	Reserved	RO	Reserved	1
			UART1 baud rate selection:	
5	bU1SMOD	RW	0: Slow mode.	0
			1: Fast mode.	
			UART1 receive enable	
4	bU1REN	RW	0: Disable.	0
			1: Enable.	
3	bU1TB8	RW	The 9 th transmitted data bit, can be a parity bit in	0
3	001108	Λ.M	9-bit data mode. In 8-bit data mode, TB8 is ignored.	0
			The 9th received data bit. In 9-bit data mode, RB8 is	
2	bU1RB8	RW	used to store the 9 th bit of the received data. In 8-bit	0
			data mode, RB8 is used to store the received stop bit.	
1	bU1TIS	WO	Write 1, and the transmit interrupt flag bit will be	0
1	001115	wo	preset to 1, and the read value is always 0.	0
0	bU1RIS	WO	Write 1, and the receive interrupt flag bit will be	0
0	UUIKIS	wo	preset to 1, and the read value is always 0.	0

UART1 baud rate is generated by SBAUD1, and can be divided into two cases according to bU1SMOD: When bU1SMOD=0, SBAUD1 = 256 - Fsys / 32 / baud rate. When bU1SMOD=1, SBAUD1 = 256 - Fsys / 16 / baud rate.

UART1 interrupt status register (SIF1):

Bit	Name	Access	Description	Reset value
[7:2]	Reserved	RO	Reserved	000000b
1	bU1TI	RW	Transmit interrupt flag bit, set by hardware after a byte is transmitted. Write 1 to reset by software (writing 0 to this bit will be ignored)	0
0	bU1RI	RW	Receive interrupt flag bit, set by hardware after a byte is received effectively. Write 1 to reset by software (writing 0 to this bit will be ignored)	0

Note: Writing 1 to the interrupt flag bit to reset can ensure that only the specified flag bit is reset, without affecting other interrupt flags in the same register (other interrupt flags may be 1 before write operation or may have become 1 during write operation). Similarly hereinafter.

UART1 data register (SBUF1):

Bit	Name	Access	Description	Reset value
[7:0]	SBUF1	RW	UART1 data register, including physically separated transmit register and receive register. The transmit register is used to write data to SBUF1. The receive register is used to read data from SBUF1.	xxh

13.2.3 UART2 register description

UART2 control register (SCON2):

Bit	Name	Access	Description	Reset value
7	bU2SM0	RW	UART2 working mode selection 0: 8-bit data. 1: 9-bit data.	0
6	bU2IE	RW	UART2 interrupt enable0: UART2 request interrupt disabled, and the interrupt flag can be inquired.1: UART2 interrupt enabled, and the original ADC interrupt is disabled for replacement.	0
5	bU2SMOD	RW	UART2 baud rate selection: 0: Slow mode. 1: Fast mode.	0
4	bU2REN	RW	UART2 receive enable 0: Disable. 1: Enable.	0
3	bU2TB8	RW	The 9 th transmitted data bit. In 9-bit data mode, TB8 is used to write the 9 th transmitted data bit, which can be a parity bit. In 8-bit data mode, TB8 is ignored.	0
2	bU2RB8	RW	The 9 th received data bit. In 9-bit data mode, RB8 is used to store the 9 th received data bit. In 8-bit data mode, RB8 is used to store the received stop bit.	0
1	bU2TIS	WO	Write 1, and the transmit interrupt flag bit will be preset to 1, and the read value is always 0.	0
0	bU2RIS	WO	Write 1, and the receive interrupt flag bit will be preset to 1, and the read value is always 0.	0

UART2 baud rate is generated by SBAUD2, and it can be divided into 2 cases according to bU2SMOD: When bU2SMOD=0, SBAUD2 = 256 - Fsys / 32 / baud rate. When bU2SMOD=1, SBAUD2 = 256 - Fsys / 16 / baud rate.

UART2 interrupt status register (SIF2):

Bit	Name	Access	Description	Reset value
[7:2]	Reserved	RO	Reserved	000000b
1	bU2TI	RW	Transmit interrupt flag bit, set by hardware after a byte is transmitted. Write 1 to reset by software (writing 0 to this bit will be ignored).	0
0	bU2RI	RW	Receive interrupt flag bit, set by hardware after a byte is received effectively. Write 1 to reset by software (writing 0 to this bit will be ignored).	0

UART2 data register (SBUF2):

Bit	Name	Access	Description	Reset value
[7:0]	SBUF2	RW	UART2 data register, including physically separated transmit register and receive register. The transmit register is used to write data to SBUF2. The receive register is used to read data from SBUF2.	xxh

13.2.4 UART3 register description

UART3 control register (SCON3):

Bit	Name	Access	Description	Reset value
7	bU3SM0	RW	UART3 working mode selection 0: 8-bit data. 1: 9-bit data.	0
6	bU3IE	RW	UART3 interrupt enable0: UART3 request interrupt disabled, and the interrupt flag can be inquired.1: UART3 interrupt enabled, and the original PWMX interrupt is disabled for replacement.	0
5	bU3SMOD	RW	UART3baud rate selection 0: Slow mode. 1: Fast mode.	0
4	bU3REN	RW	UART3 receive enable 0: Disable. 1: Enable.	0
3	bU3TB8	RW	The 9 th transmitted data bit. In 9-bit data mode, TB8 is used to write the 9 th transmitted data bit, which can be a parity bit. In 8-bit data mode, TB8 is ignored.	0
2	bU3RB8	RW	The 9 th received data bit. In 9-bit data mode, RB8 is used to store the 9 th received data bit. In 8-bit data mode, RB8 is used to store the received stop bit.	0

1	bU3TIS	WO	Write 1, the transmit interrupt flag bit will be preset to 1, and the read value is always 0.	0
0	bU3RIS	WO	Write 1, the receive interrupt flag bit will be preset to 1, and the read value is always 0.	0

UART3 baud rate is generated by SBAUD3, and it can be divided into 2 cases according to bU3SMOD: When bU3SMOD=0, SBAUD3 = 256 - Fsys / 32 / baud rate; When bU3SMOD=1, SBAUD3 = 256 - Fsys / 16 / baud rate.

UART3 interrupt status register (SIF3):

Bit	Name	Access	Description	Reset value
[7:2]	Reserved	RO	Reserved	000000b
1	bU3TI	RW	Transmit interrupt flag bit, set by hardware after a byte is transmitted. Write 1 to reset by software (writing 0 to this bit will be ignored).	0
0	bU3RI	RW	Receive interrupt flag bit, set by hardware after a byte is received effectively. Write 1 to reset by software (writing 0 to this bit will be ignored).	0

UART3 data register (SBUF3):

Bit	Name	Access	Description	Reset value
[7:0]	SBUF3	RW	UART3 data register, including physically separated transmit register and receive register. The transmit register is used to write data to SBUF3. The receive register is used to read data from SBUF3.	xxh

13.3 UART Application

UART0 application:

- (1). Select UART0 baud rate generator from T1 or T2, and set counter.
- (2). Enable T1 or T2.
- (3). Set SM0, SM1, SM2 in SCON to select UART0 working mode. Set REN to 1 and enable UART0 receiver.
- (4). Set UART interrupt or query R1 and T1 interrupt status.
- (5). Read/write SBUF to receive/transmit data, and the allowed receive baud rate error should be not more than 2%.

UART1 application:

- (1). Select bU1SMOD and set SBAUD1 based on the baud rate.
- (2). Set bU1SM0 in SCON1 to select UART1 working mode. Set bU1REN to 1 and enable UART1 receiver.
- (3). Set UART1 interrupt or query bU1RI and bU1TI interrupt status (only write 1 to the specified bit to reset).
- (4). Read/write to SBUF1 to receive/transmit data, and the allowed baud rate error should be not more than 2%.

UART2 application (UART3 application):

- (1). Select bU2SMOD and set SBAUD2 based on the baud rate.
- (2). Set bU2SM0 in SCON2 to select UART2 working mode. Set bU2REN to 1 and enable UART2 receiver.
- (3). Query bU2RI and bU2TI interrupt status (write 1 to the specified bit to reset), or enable UART2 interrupt and set bU2IE to 1 to replace ADC (PWMX for UART3) interrupt.
- (4). Read/write to SBUF2 to receive/transmit data, and the allowed baud rate error should be not more than 2%.

14. Synchronous serial interface (SPI)

14.1 SPI introduction

CH547 provides one SPI interface for high-speed synchronous data transfer between peripheral devices.

- (1). Supports master mode and slave mode;
- (2). Supports mode0 and mode3 clock mode;
- (3). Optional 3-line full duplex mode or 2-line half-duplex mode;
- (4). Optional MSB first or LSB first;
- (5). Clock frequency is variable, up to half of the system clock frequency;
- (6). Built-in 1-byte receiver FIFO and 1-byte transmitter FIFO;
- (7). Supports the first byte pre-load data in slave mode to facilitate the host to obtain the returned data immediately in the first byte.

14.2 SPI register

Table 14.2.1 List of SPI registers	

Name	Address	Description	Reset value
SPI0_SETUP	FCh	SPI0 setup register	00h
SPI0_S_PRE	FBh	SPI0 slave mode preset data register	20h
SPI0_CK_SE	FBh	SPI0 clock divisor setting register	20h
SPI0_CTRL	FAh	SPI0 control register	02h
SPI0_DATA	F9h	SPI0 data register	xxh
SPI0_STAT	F8h	SPI0 status register	08h

SPI0 setup register (SPI0_SETUP):

Bit	Name	Access	Description	Reset value
			SPI0 master/slave mode selection	
7	bS0_MODE_SLV	RW	0: Master mode.	0
			1: Slave mode/device mode.	
			FIFO overflow interrupt enable in slave mode	
6	bS0_IE_FIFO_OV	RW	1: FIFO overflow interrupt is enabled.	0
			0: FIFO overflow will not result in interrupt.	
			The first receive byte interrupt in slave mode enable:	
5	bS0_IE_FIRST	RW	1: The first receive byte will trigger interrupt in slave	0
			mode.	

			0: The first receive byte will not trigger interrupt.	
			Data byte transfer completion interrupt enable:	
4		DW	1: Byte transfer completion interrupt is enabled.	0
4	bS0_IE_BYTE	RW	0: Byte transfer completion interrupt will not result	0
			in interrupt.	
			Data byte bit order control:	
3	bS0_BIT_ORDER	RW	0: MSB in first.	0
			1: LSB in first.	
2	Reserved	RO	Reserved	0
			CS activation status in slave mode:	
1	bS0_SLV_SELT	R0	0: Not selected at present.	0
			1: Selected at present.	
			Preload data state in slave mode	
0	bS0_SLV_PRELOAD	R0	1: It is in preload state before data transmission	0
			while CS is valid	

SPI0 clock divisor setting register (SPI0_CK_SE):

Bit	Name	Access	Description	Reset value
[7:0]	SPI0_CK_SE	RW	SPI0 clock divisor setting in master mode	20h

SPI0 slave mode preset data register (SPI0_S_PRE)

Bit	Name	Access	Description	Reset value
[7:0]	SPI0_S_PRE	RW	Pre-load first transfer data in slave mode	20h

SPI0 control register (SPI0_CTRL):

Bit	Name	Access	Description	Reset value
			SPI0 MISO output enable:	
7	bS0_MISO_OE	RW	1: Enable output.	0
			0: Disable output.	
			SPI0 MOSI output enable:	
6	bS0_MOSI_OE	RW	1: Enable output.	0
			0: Disable output.	
			SPI0 SCK output enable:	
5	bS0_SCK_OE	RW	1: Enable output.	0
			0: Disable output.	
			SPI0 data direction:	
			0: Output data, only regard FIFO writing as valid	
4	bS0_DATA_DIR	RW	operation, start a SPI transmission.	0
			1: Input data, reading or writing FIFO are all valid,	
			start a SPI transmission.	
3	bS0_MST_CLK	RW	SPI0 master clock mode:	0

			0: Mode0, default low level when SCK is free.		
			1: Mode3, SCK default high level.		
			SPI0 2 line half duplex mode enable:		
2	LCO 2 WIDE	RW	0: 3 line full duplex mode, including SCK, MOSI,	0	
2	2 bS0_2_WIRE		and MISO.	0	
			1: 2 line half duplex mode, including SCK, MISO.		
1	1 bS0_CLR_ALL		1: Clear SPI0 interrupt flag and FIFO.	1	
1			Reset by software.	1	
			Clear byte receiving completion interrupt flag		
			automatically by FIFO valid operation enable bit:		
0	bS0_AUTO_IF	RW	1: It will clear byte receiving completion interrupt	0	
			flag S0_IF_BYTE automatically when there is valid		
			FIFO read/write operation.		

SPI0 data register (SPI0_DATA):

Bit	Name	Access	Description	Reset value
[7:0]	SPI0_DATA	RW	Including physically separated receive FIFO and transmit FIFO. The receive FIFO is used for read operation. The transmit FIFO is used for write operation. SPI transmission can be started by valid read/write operation	xxh

SPI0 status register (SPI0_STAT):

Bit	Name	Access	Description	Reset value
7	S0_FST_ACT	R0	1: First byte has been received in slave mode	0
6	S0_IF_OV	RW	RW FIFO overflow flag in slave mode: 1: FIFO overflow interrupt. 0: No interrupt Directly write 0 to reset, or write 1 to the corresponding bit in the register to reset. Transmit FIFO empty triggers interrupt when bS0_DATA_DIR=0. Receive FIFO full triggers interrupt when bS0_DATA_DIR=1.	
5	S0_IF_FIRST RW The first byte received completion interrupt flag in slave mode: 1: The first byte has been received. Directly write 0 to reset, or write 1 to the corresponding bit in the register to reset.		0	
4	S0_IF_BYTE	RW	Data byte transfer completion interrupt flag 1: One byte has been transferred. Directly write 0 to reset, or write 1 to the corresponding bit in the register to reset. Valid FIFO operation while bS0_AUTO_IF=1 can also reset it.	0

3	S0_FREE	R0	SPI0 free flag1: No SPI shifting at present, usually in free periodbetween data bytes.	1
2	S0_T_FIFO	R0	R0 SPI0 transmit FIFO count, the valid value is 0 or 1	
1	Reserved	R0	R0 Reserved	
0	S0_R_FIFO	R0	R0 SPI0 receive FIFO count, the valid value is 0 or 1	

14.3 SPI transfer format

SPI host mode supports two transfer formats, including mode0 and mode3, which can be selected by setting bSn_MST_CLK in SPIn_CTRL. CH547 always samples MISO data during CLK rising edge. The data transfer formats are shown below.

Mode0: $bSn_MST_CLK = 0$



Figure 14.3.1 SPI mode0 timing diagram

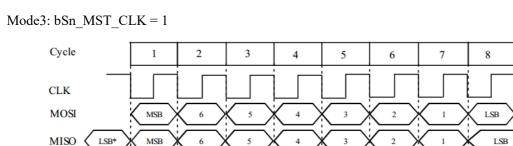


Figure 14.3.2 SPI mode3 timing diagram

14.4 SPI configuration

14.4.1 SPI master mode configuration

In SPI master mode, SCK pin outputs serial clock, and CS output pin can be assigned as any I/O pin.

SPI0 configuration steps:

- (1). Configure SPI clock frequency by setting SPI0_CK_SE.
- (2). Configure SPI master mode by setting bS0_MODE_SLV in SPI0_SETUP to 0.
- (3). Set bS0_MST_CLK in SPI0_CTRL to select mode0/3 as required.
- (4). Set bS0_SCK_OE and bS0_MOSI_OE in SPI0_CTRL to 1, set bS0_MISO_OE to 0, set bSCK and bMOSI as output, bMISO as input, and CS pin as output.

Data transmission:

- (1). Write SPI0_DATA register, write data ready for sending to FIFO and start SPI transmission once automatically.
- (2). Wait for S0_FREE until it is 1, indicating that data transmission is over, and can continue to send next byte.

Data reception:

- (1). Write SPI0 DATA register, start SPI transmission once by writing any data such as 0FFh to FIFO.
- (2). Wait for S0_FREE until it is 1, indicating that data reception is over, and can get data by reading SPI0_DATA.
- (3). The operation above can also start SPI transmission once while bS0_DATA_DIR has been 1, otherwise no SPI transmission starts.

14.4.2 SPI slave mode configuration

Only SPI0 supports slave mode. In slave mode, the serial clock is received on the SCK pin from the master device.

- (1). Set bS0_MODE_SLV in SPI0_SETUP to 1, to select slave mode.
- (2). Set bS0_SCK_OE and bS0_MOSI_OE in SPI0_CTRL to 0, set bS0_MISO_OE to 1, set bSCK, bMOSI and bMISO as well as CS pin as input. When SCS is valid (low level), MISO will automatically enable output. In addition, it is recommended to set MISO pin high impedance input mode (P1_MOD_OC[6]=0, P1_DIR_PU[6]=0), so that MISO will not output during invalid CS, which is conductive to sharing the SPI bus.
- (3). Optional step. Set SPI0_S_PRE for the first data output after the CS pin is effective. After the 8 serial clocks, that is the first data byte exchanged, the CH547 slave device gets the first byte (possibly command code) from SPI master, and the external SPI master gets the data byte (possibly status value) in SPI0_S_PRE. The bit7 in SPI0_S_PRE will be automatically loaded into the MISO pin during low level SCK after the SCS pin is effective. In SPI mode0, if the bit7 in SPI0_S_PRE is set, the external SPI master will get the preset value of bit7 in SPI0_S_PRE by inquiring the MISO pin when the SCS pin is effective but there is no data transfer, thereby the value of bit7 in SPI0_S_PRE can be obtained only by the effective SCS.

Data transmission:

Read S0_IF_BYTE or wait for interrupt, and write SPI0_DATA after each SPI data byte transfer, and write the data to be sent to FIFO. Or wait for S0_FREE to be changed from 0 to 1, and the next byte can be transmitted.

Data reception:

Read S0_IF_BYTE or wait for interrupt, and read the SPI0_DATA register after each SPI data byte transfer, and obtain the received data from FIFO. Read S0_R_FIFO to know whether there are any remaining bytes in FIFO.

15. Analog to digital converter (ADC) and Touch-key (TKEY)

15.1 Introduction to ADC and CMP

CH547 provides a 12-bit analog to digital converter, including ADC and CMP.

This ADC provides 12 external analog signal input channels and 4 internal input channels (reference voltage), which allows time-sharing acquisition, and supports analog input voltage from 0 to VDD. CH546 only provides 8 external analog signal input channels (AIN0-AIN7) and 4 internal input channels.

The positive input of the CMP multiplexes the above ADC inputs. The inverse input has 2 external analog signal input channels and 2 internal reference voltage input channels, which allows time-sharing

comparison. There are more than 52 kinds of combinations, supporting analog input voltage from 0 to VDD.

15.2 ADC and CMP register

Name	Address	Description	Reset value
ADC_CTRL	F2h	ADC control and status register	xxh
ADC_CFG	F3H	ADC configuration register	00h
ADC_DAT_H	F5h	ADC result data high byte (read only)	0xh
ADC_DAT_L	F4h	ADC result data low byte (read only)	xxh
ADC_DAT	F4h	16-bit SFR consists of ADC_DAT_L and ADC_DAT_H	0xxxh
ADC_CHAN	F6h	ADC analog signal channel selection register	00h
ADC_PIN	F7h	ADC pin digital input control register	00h

Table 15.2.1 List of ADC registers

ADC control and status register (ADC_CTRL):

Bit	Name	Access	Description	Reset value
7	bCMPDO	RO	RO CMP result output bit after synchronous delay, the status of bCMPO after synchronous delay with bCMP IF	
6	bCMP_IF	RW	CMP result change interrupt flag 1: CMP result has changed. Write 1 to reset.	0
5	bADC_IF	RW	ADC conversion completion interrupt flagRW1: An ADC conversion is completed. Write 1 to resetor write TKEYCTRL to reset.	
4	bADC_START	RW	ADC start control, set 1 to start an ADC conversion. Reset automatically at the end of ADC conversion.	0
3			Touch-key detection activation state 1: Capacitor is being charged and the ADC is being measured.	0
[2:1]	Reserved	R0	Reserved	00b
0	bCMPO	RO	CMP result real-time output0: Voltage on positive input is lower than voltage on inverted inputl.1: Voltage on positive input is higher than voltage on inverted input.	х

ADC configuration register (ADC_CFG):

Bit	Name	Access	Description	Reset value
[7:6]	Reserved	R0	R0 Reserved	
5	bADC_AIN_EN	RW	CMP positive input and ADC input channel external AIN enable	0

			 One of 16 AIN is selected by MASK_ADC_CHAN. 0: Disable external AIN. 		
4	bVDD_REF_EN	RW	Internal reference voltage enable1: Internal reference voltage is generated by multipleseries resistors to the supply voltage.0: Disable divider resistance.	0	
3	bADC_EN	RW	ADC power control 0: ADC power off, and enter sleep state. 1: ADC power on.		
2	bCMP_EN	RW	 CMP power control 0: CMP power off, and enter sleep state. 1: CMP power on. In addition, it will automatically enable CMP wake-up function, and it will automatically wake up if the comparator result changes during sleep. 	0	
1	bADC_CLK1	RW	ADC reference clock frequency selection high bit	0	
0	bADC_CLK0	RW	ADC reference clock frequency selection low bit	0	

Table 15.2.2 ADC reference clock frequency selection

			1	
bADC_CLK1	bADC_CLK0	ADC reference	Time required to	Applicable scope
		clock frequency	complete an ADC	
0	0	750KHz	512 Fosc	Rs<=16KΩ or Cs>=0.08uF
0	1	1.5MHz	256 Fosc	$Rs \le 8K\Omega \text{ or } Cs \ge 0.08uF$
1	0	21411-	129 Easo	VDD>=3V and
1	0	3MHz	128 Fosc	(Rs<=4KΩ or Cs>=0.08uF)
1	1	6MHz	64 Fora	VDD>=4.5V and
l	1	OWIHZ	64 Fosc	(Rs<=2KΩ or Cs>=0.08uF)

Note: VDD refers to supply voltage, Cs refers to capacitance parallel with signal source, and Rs refers to internal resistance in series with signal source (the sampling time is only 3 reference clocks).

ADC analog signa	l channel	selection	register	(ADC_	CHAN):
------------------	-----------	-----------	----------	-------	--------

Bit	Name	Access	Description	Reset value
[7:6]	MASK_CMP_CHAN	RW	CMP inverted input signal channel selection	00b
[5:4]	MASK_ADC_I_CH	RW	CMP positive input and ADC input internal signal channel selection	00b
[3:0]	MASK_ADC_CHAN	RW	CMP positive input and ADC input external signal channel selection when bADC_AIN_EN=1. External signal channel disable when bADC_AIN_EN=0. For CH546, only the lower 3 bits are valid	0000Ь

bCMP_EN	bVDD_REF_EN	MASK_CMP_CHAN	CMP inverted input signal channel selection
0	Х	xxb	Disconnect signal channel, suspended
1	0	00b	Disconnect signal channel, suspended
1	1	00b	Connect to internal reference voltage: 12.5% of VDD voltage
1	0	01b	Connect to internal reference voltage: 100% of VDD voltage
1	1	01b	Connect to internal reference voltage: 25% of VDD voltage
1	Х	10b	Connect to external signal AIN1 (P1.1)
1	Х	11b	Connect to external signal AIN2 (P1.2)

Table 15.2.1 CMP inverted input signal channel selection

Table 15.2.2 CMP positive input and ADC input internal signal channel selection

bADC_EN	bADC_AIN_EN	bVDD_REF_EN	MASK_ADC_I_CH	CMP positive input and ADC input internal signal channel selection
х	X	0	00b	Disconnect internal signal channel, suspended
х	х	1	00Ь	Connect to internal reference voltage: 50% of VDD voltage
х	х	Х	01b	Connect to internal reference voltage: V33 voltage
Х	x	х	10b	Connect to internal voltage/with noise: 54.5% of V33 voltage
1	0	Х	11b	Connect to internal signal: temperature sensor (TS), For specific operation, please refer to program routines
0	х	Х	11b	Disconnect internal signal channel, suspended
х	1	Х	11b	Disconnect internal signal channel, suspended

bADC_AIN_EN	MASK_ADC_CHAN	CMP positive input and ADC input external signal channel selection
0	xxxxb	Disconnect the external signal channel (AIN0-AIN11), suspended
1	0000b	Connect to external signal AIN0 (P1.0)
1	0001b	Connect to external signal AIN1 (P1.1)
1	0010b	Connect to external signal AIN2 (P1.2)
1	0011b	Connect to external signal AIN3 (P1.3)
1	0100b	Connect to external signal AIN4 (P1.4)
1	0101b	Connect to external signal AIN5 (P1.5)

1	0110b	Connect to external signal AIN6 (P1.6)
1	0111b	Connect to external signal AIN7 (P1.7)
1	1000b	Connect to external signal AIN8 (P0.0)
1	1001b	Connect to external signal AIN9 (P0.1)
1	1010b	Connect to external signal AIN10 (P0.2)
1	1011b	Connect to external signal AIN11 (P0.3)
1	11	Disconnect the external signal channel (AIN0-IN11),
	11xxb	suspended

For CH546, only the lower 3 bits of MASK_ADC_CHAN are valid, and MASK_ADC_CHAN[3] is always 0.

CMP positive input and ADC input can only be connected to the internal signal, or only connected to external signal, or connected to both the internal and external signals. When connected to internal and external signals simultaneously, intercommunication can be implemented between internal signals and external signals. The ON resistance is a series connection of 2 Rsw, and the internal reference voltage (there is also its internal resistance) will be connected to the external signal pins AIN0-AIN11 via the above two Rsw resistors, which is equivalent to the pull-up resistor providing a specific voltage for signal pins.

Ca is a 15pF sampling capacitor. The R2/R1 resistance ratio is 54.5:45.5. The 4R/2R/R resistance ratio is 4:2:1.

ADC data register (ADC_DAT):

Bit	Name	Access	Description	Reset value
[7:0]	ADC_DAT_H	RO	High byte of ADC sampling result data	0xh
[7:0]	ADC_DAT_L	RO	Low byte of ADC sampling result data	xxh

ADC pin digital input control register (ADC_PIN):

Bit	Name	Access	Description	Reset value	
7	Reserved	RO	Reserved	0	
6	Reserved	RO	Reserved	0	
5	LAINIA 11 DI DIS	RW	AIN10 and AIN11 digital input disable	0	
3	bAIN10_11_DI_DIS	KW	0: AIN10 and AIN11 digital input enabled.	0	
4		RW	AIN8 and AIN9 digital input disable	0	
4	bAIN8_9_DI_DIS	KW	0: AIN8 and AIN9 digital input enabled.	0	
3	bAIN6_7_DI_DIS RW		DW	AIN6 and AIN7 digital input disable	0
3		ΚW	0: AIN6 and AIN7 digital input enabled.	0	
2		bAIN4 5 DI DIS RW	DW	AIN4 and AIN5 digital input disable	0
2	UAIN4_5_DI_DIS	ις vv	0: AIN4 and AIN5 digital input enabled.	0	
1	LAINI2 2 DI DIS	RW	AIN2 and AIN3 digital input disable	0	
1	bAIN2_3_DI_DIS	κ.w	0: AIN2 and AIN3 digital input enabled.	0	
0	LAINO 1 DI DIS	RW	AIN0 and AIN1 digital input disable	0	
U	bAIN0_1_DI_DIS	ĸw	0: AIN0 and AIN1 digital input enabled.	U	

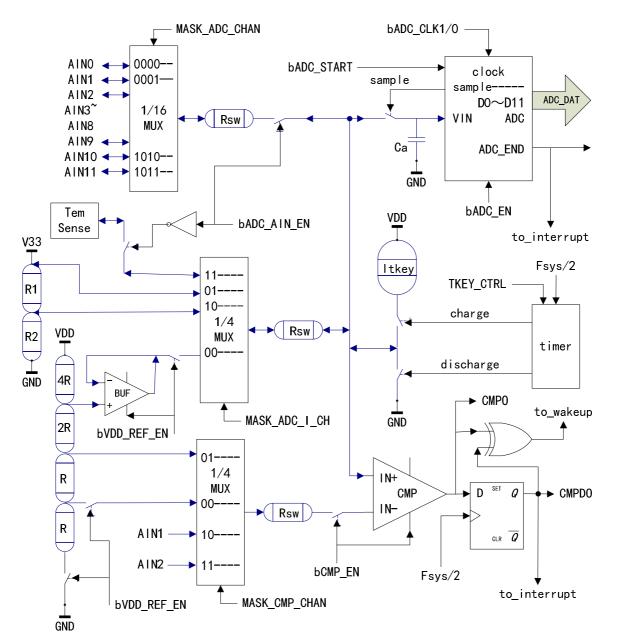


Figure 15.2.1 ADC/CMP/TKEY structure diagram (blue lines to represent analog signals)

15.3 TKEY register

Table 15.3.1 List of TKEY re	gisters
------------------------------	---------

Name	Address	Description	Reset value
TKEY_CTRL	F1h	Touch key charging pulse width control register	00h

Touch key charging pulse width control register (TKEY_CTRL):

Bit	Name	Access	Description	Reset value
[7:0]	TKEY_CTRL	WO	Touch key charging pulse width value, only the lower 7 bits are effective, count in the unit 2/Fsys, and it will automatically initate the voltage on ADC measuring capacitor when the timing is up.	00h

15.4 ADC and Touch-Key function

ADC sampling mode configuration steps:

- (1). Set bADC_EN in ADC_CFG to 1, to enable ADC module, and set bADC_CLK0/1 to select frequency.
- (2). Set MASK_ADC_CHAN or MASK_ADC_I_CH in ADC_CHAN register, to select external or internal signal channel.
- (3). Optional step. Reset bADC_IF. Optional. The interrupt needs to be enabled if the interrupt mode is enabled.
- (4). Set bADC_START in ADC_CTRL, to start an ADC conversion.
- (5). Wait for bADC_START until it is 0, or bADC_IF to be set to 1 (if cleared before), indicating that ADC conversion is completed and the result can be read through ADC_DAT. This data is the value of the input voltage relative to 4095 equal parts of the VDD supply voltage, for example, if the result value is 475, the input voltage is approximate to 475/4095 of the VDD voltage. If the VDD supply voltage is also uncertain, another reference voltage value can be measured, and the measured input voltage value and the VDD supply voltage value can be calculated proportionally.
- (6). Set bADC_START again, to start the next ADC conversion.
- (7). If the ADC reference clock frequency is high, resulting in a short sampling time, or high internal resistance in series with signal source, or large Rsw internal resistance due to low supply voltage, then Ca may not sample enough signal voltage, and it will affect ADC result. The solution is to discard the first ADC data, immediately start the second ADC and use its ADC result data (sample twice).
- (8). In case of high accuracy requirement, it is recommended to calibrate before use and eliminate the inherent deviation with software.

CMP mode configuration steps:

- (1). Set bCMP_EN in ADC_CFG to 1, to enable CMP module.
- (2). Set MASK_ADC_CHAN, MASK_CMP_CHAN and MASK_ADC_I_CH in ADC_CHAN, to select positive/inverted input signals respectively. Multiple combinations can be selected, such as comparison between AIN0-AIN11 and AIN1/AIN2, comparison between AIN0-AIN11 and internal reference voltage, and comparison between AIN1/AIN2 and internal reference voltage, etc.
- (3). Optional step. Reset bCMP_IF. Optional, the interrupt needs to be enabled if the interrupt mode is enabled.
- (4). Read the bCMPO bit to get the CMP result.
- (5). If the bCMP_IF is changed into 1, it indicates that the CMP result has changed.

Touch-Key detection steps:

- (1). Set bADC_EN in ADC_CFG to 1, to enable ADC module, and set bADC_CLK0/1 to select frequency.
- (2). Set MASK_ADC_CHAN in ADC_CHAN, to select touch-key signal channel.
- (3). Select the appropriate charging pulse width according to the actual capacitance of the touch key, and write into the TKEY_CTRL register. The simple calculation formula is as follows (assume that the external capacitance of the touch key Ckey=25pF, VDD=5V, Fsys=12MHz, rough calculation): count=(Ckey+Cint)*0.7VDD/ITKEY/(2/Fsys)=(25p+15p)*0.35*5*12M/50u=17 TKEY_CTRL=count > 127 ? 127 : count
- (4). Optional step. The interrupt needs to be enabled if the interrupt mode is enabled.
- (5). When the capacitor charge timing of the touch key is reached, CH547 will automatically set bADC_START to start ADC and measure the voltage on the capacitor
- (6). Wait for bTKEY_ACT until it is 0, or bADC_IF to be set to 1, indicating the end of charging and ADC

conversion, and the result can be read through ADC_DAT. Software then compares this value with that without pressing the key, and determines whether the touch key is pressed or not according to the change in capacitance.

63

- (7). Shift to step (2) as required, to select another touch key signal channel for detection.
- (8). If the actual capacitance of the touch key is greater than 40pF or the system clock frequency is 48MHz/6MHz, then the internal automatic discharge time may be insufficient, and it may be necessary to output GPIO low level at about 1uS for full discharge of the above capacitor.

For the above selected external analog signal channel, the corresponding GPIO pin must be set in high-impedance input mode or open-drain output mode and set in output 1 state (equivalent to high-impedance input), $Pn_DIR_PU[x]=0$, and disable the pull-up resistor and pull-down resistor.

16. USB controller

16.1 USB introduction

CH547 has built-in USB device controller and USB transceiver, with features as follows:

(1). Support USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) modes;

- (2). Support USB control transfer, bulk transfer, interrupt transfer, and isochronous transfer;
- (3). Support up to 64-byte packet, with built-in FIFO, support interrupt and DMA modes.

CH547 USB registers are divided into:

- (1). USB global registers;
- (2). USB device controller registers.

16.2 Global register

Table 16.2.1 USB global registers (those marked in grey are controlled by bUC_RESET_SIE reset)

Name	Address	Description	Reset value
USB_INT_FG	D8h	USB interrupt flag register	0010 0000b
USB_INT_ST	D9h	USB interrupt status register (read only)	00xx xxxxb
USB_MIS_ST	DAh	USB miscellaneous status register (read only)	xx10 1000b
USB_RX_LEN	DBh	USB receiving length register (read only)	0xxx xxxxb
USB_INT_EN	E1h	USB interrupt enable register	0000 0000b
USB_CTRL	E2h	USB control register	0000 0110b
USB_DEV_AD	E3h	USB device address register	0000 0000b

USB interrupt flag register (USB_INT_FG):

Bit	Name	Access	Description	Reset value
7	U_IS_NAK	RO	 Receive NAK busy response during current USB transfer. Receive non-NAK response. 	0
6	U_TOG_OK	RO	Current USB transfer DATA0/1 synchronization flag match state1: Synchronization, and the data is valid.0: Out of synchronization, and the data may be invalid.	0

			USB SIE free state	
5	U_SIE_FREE	RO	0: Busy, and USB transfer is in progress.	1
			1: USB free.	
			USB FIFO overflow interrupt flag	
			1: FIFO overflow interrupt.	
4	UIF_FIFO_OV	RW	0: No interrupt.	0
			Directly write 0 to reset, or write 1 to the corresponding	
			bit in the register to reset.	
3	Reserved	RO	Reserved	0
			USB bus suspend or wake-up event interrupt flag	
		DW	1: There is an interrupt, triggered by USB suspend	0
2	LIE CUCDEND		event or wake-up event.	
2	UIF_SUSPEND	RW	0: No interrupt.	
			Directly write 0 to reset, or write 1 to the corresponding	
			bit in the register to reset.	
			USB transfer completion interrupt flag	
			1: There is an interrupt, triggered by USB transfer	
1	UIF TRANSFER	RW	completion.	0
1		IX W	0: No interrupt.	0
			Directly write 0 to reset, or write 1 to the corresponding	
			bit in the register to reset.	
			USB bus reset event interrupt flag	
			1: There is an interrupt, triggered by USB bus reset event.	0
0	UIF_BUS_RST	RW	0: No interrupt.	
			Directly write 0 to reset, or write 1 to the corresponding	
			bit in the register to reset.	

USB interrupt status register (USB_INT_ST):

Bit	Name	Access	Description	Reset value
7	bUIS_IS_NAK	RO	1: Receive NAK busy response during current USB transfer. The same as U_IS_NAK	0
6	bUIS_TOG_OK	RO	Current USB transfer DATA0/1 synchronization flag match state 1: Synchronization. 0: Out of synchronization. The same as U_TOG_OK	0
5	bUIS_TOKEN1	RO	Current USB transmission transaction token PID high bit	Х
4	bUIS_TOKEN0	R0	Current USB transmission transaction token PID low bit	х
[3:0]	MASK_UIS_ENDP	RO	Endpoint serial number of the current USB transfer transaction 0000: Endpoint 0. 1111: Endpoint 15.	xxxxb

MASK_UIS_TOKEN consists of bUIS_TOKEN1 bit and bUIS_TOKEN0 bit, which is used to indicate the

current USB transmission transaction in USB device mode:

00: OUT packet.

01: SOF packet.

10: IN packet.

11: SETUP packet.

USB miscellaneous status register (USB_MIS_ST):

Bit	Name	Access	Description	Reset value
7	Reserved	RO	Reserved	х
6	Reserved	RO	Reserved	х
5	bUMS_SIE_FREE	RO	USB SIE free state 0: Busy, and USB transfer is in progress. 1: Free. The same as U_SIE_FREE	1
4	bUMS_R_FIFO_RDY	RO	USB receive FIFO data ready state 0: Receive FIFO is empty. 1: Receive FIFO is not empty.	0
3	bUMS_BUS_RESET	RO	USB bus reset status 0: No USB bus reset at present. 1: USB bus reset is in progress.	1
2	bUMS_SUSPEND	RO	USB suspend status 0: There is USB activity at present. 1: No USB activity for some time, and request to be suspended.	0
1	Reserved	RO	Reserved	0
0	Reserved	RO	Reserved	0

USB receiving length register (USB_RX_LEN):

Bit	Name	Access	Description	Reset value
[7:0]	bUSB_RX_LEN	RO	The number of bytes received by USB endpoint currently	xxh

USB interrupt enable register (USB_INT_EN):

Bit	Name	Access	Description	Reset value
7	bUIE_DEV_SOF	RW	 1: Enable receiving SOF packet interrupt. 0: Disable. 	0
6	bUIE_DEV_NAK	RW	 1: Enable receiving NAK interrupt. 0: Disable. 	0
5	Reserved	RO	Reserved	0
4	bUIE_FIFO_OV	RW	1: Enable FIFO overflow interrupt. 0: Disable.	0
3	Reserved	RO	Reserved	0

2	bUIE_SUSPEND	RW	 1: Enable USB bus suspend or wake-up event interrupt. 0: Disable. 	0
1	bUIE_TRANSFER	RW	 1: Enable USB transfer completion interrupt. 0: Disable. 	0
0	bUIE_BUS_RST	RW	 1: Enable USB bus reset event interrupt. 0: Disable. 	0

USB control register (USB_CTRL)

Bit	Name	Access	Description	Reset value
7	Reserved	RO	Reserved	0
			USB bus speed selection	
6	bUC LOW SPEED	RW	0: Full speed (12Mbps).	0
			1: Low speed (1.5Mbps).	
			USB device enable and internal pull-up resistor enable	
5	bUC_DEV_PU_EN	RW	1: Enable USB device transfer and enable internal	0
			pull-up resistor.	
5	bUC_SYS_CTRL1	RW	USB system control high bit	0
4	bUC_SYS_CTRL0	RW	USB system control low bit	0
			Auto pause enable bit before USB transfer completion	
			interrupt flag is not reset	
3	bUC_INT_BUSY	RW	1: Auto pause and repond busy NAK before	0
			UIF_TRANSFER is not reset.	
			0: Not pause.	
			USB SIE software reset control	
2	LUC DESET SIE	DW	1: Force reset USB SIE and most of USB control	1
2	bUC_RESET_SIE	RW	registers.	1
			Reset by software.	
1	bUC CLR ALL	RW	1: Clear USB interrupt flag and FIFO.	1
	UUC_ULK_ALL	17.44	Reset by software.	1
0	bUC DMA EN	RW	1: Enable USB DMA and DMA interrupt.	0
U	DUC_DMA_EN	IX VV	0: Disable.	U

 $USB\ system\ control\ consists\ of\ bUC_SYS_CTRL1\ and\ bUC_SYS_CTRL0.$

bUC_SYS_CTRL1	bUC_SYS_CTRL0	USB system control description
0	0	Disable USB device function, disable internal pull-up resistor
0	1	Enable USB device function, disable internal pull-up resistor, and an external pull-up resistor is required
1	Х	Enable USB device function, enable internal $1.5K\Omega$ pull-up resistor which is is prior to the pull-down resistor, also can be used in GPIO mode.

Bit	Name	Access	Description	Reset value
7	bUDA_GP_BIT	RW	USB general purpose flag. User-defined. Can be reset and set by software.	0
[6:0]	MASK_USB_ADDR	RW	USB device address	00h

USB device address register (USB DEV AD):

16.3 Device register

In USB device mode, CH547 provides 5 bidirectional endpoints, including endpoint0-endpoint4. The maximum data packet size of all endpoints is 64 bytes.

Endpoint0 is the default endpoint and supports control transfer. Transmission and reception share a 64-byte data buffer.

Endpoint1, endpoint2, endpoint3 each has a transmission endpoint IN and a reception endpoint OUT. The transmitter and receiver each has a single 64-byte buffer or a double 64-byte buffer, support control transfer, bulk transfer, interrupt transfer, and real-time/isochronous transfer.

Endpoint4 has a transmission endpoint IN and a reception endpoint OUT. The transmitter and receiver each has a single 64-byte buffer, supports control transfer, bulk transfer, interrupt transfer, and real-time/isochronous transfer.

Each endpoint has a control register (UEPn_CTRL) and a transmittal length register (UEPn_T_LEN) (n=0/1/2/3/4), to configure the synchronization trigger bit of endpoint, the response to OUT transactions and IN transactions and the transmittal length.

As the necessary USB bus pull-up resistor for USB device, it can be set to be enabled/disabled by software at any time. When bUC_DEV_PU_EN in USB_CTRL is set to 1, CH547 will internally connect the pull-up resistor to USB DP pin or DM pin based on bUD_LOW_SPEED and enable the USB device function.

When USB bus reset or USB bus suspend/wake-up event is detected, or when the USB successfully processes data transmission and reception, USB SIE will set the corresponding interrupt flag and generate interrupt request. The application program can directly read, or read and analyze USB_INT_FG in the USB interrupt service program, and perform corresponding processing according to UIF_BUS_RST and UIF_SUSPEND. In addition, if UIF_TRANSFER is valid, it is required to continue to analyze USB_INT_ST, and perform the corresponding processing according to MASK_UIS_ENDP and MASK_UIS_TOKEN. If bUEP_R_TOG of OUT transaction of each endpoint is set in advance, you can judge whether the synchronization trigger bit of the packet received matches the synchronization trigger bit of the data is not synchronized, the data should be discarded. Every time the USB receive/transmit interrupt is processed, the synchronization trigger bit of corresponding endpoint should be modified correctly to synchronize the packet sent next time and detect whether the packet received next time is synchronized. In addition, bUEP_AUTO_TOG can be set to automatically toggle the corresponding synchronization trigger bit after successful received/transmission.

The data to be sent by each endpoint is in their own buffer, and the transmittal length is independently set in UEPn_T_LEN. The data received by each endpoint is in their own buffer, but the receiving length is in USB_RX_LEN, and it can be distinguished according to the current endpoint serial number when USB is receiving an interrupt.

Name	Address	Description	Reset value
UDEV_CTRL	D1h	USB device physical port control register	00xx 0000b
UEP1_CTRL	D2h	Endpoint1 control register	0000 0000b
UEP1_T_LEN	D3h	Endpoint1 transmittal length register	0xxx xxxxb
UEP2_CTRL	D4h	Endpoint2 control register	0000 0000b
UEP2_T_LEN	D5h	Endpoint2 transmittal length register	0000 0000b
UEP3_CTRL	D6h	Endpoint3 control register	0000 0000b
UEP3_T_LEN	D7h	Endpoint3 transmittal length register	0xxx xxxxb
UEP0_CTRL	DCh	Endpoint0 control register	0000 0000b
UEP0_T_LEN	DDh	Endpoint0 transmittal length register	0xxx xxxxb
UEP4_CTRL	DEh	Endpoint4 control register	0000 0000Ь
UEP4_T_LEN	DFh	Endpoint4 transmittal length register	0xxx xxxxb
UEP4_1_MOD	EAh	Endpoint1/4 mode control register	0000 0000b
UEP2_3_MOD	EBh	Endpoint2/3 mode control register	0000 0000b
UEP0_DMA_H	EDh	Endpoint0&4 buffer start address high byte	0000 0xxxb
UEP0_DMA_L	ECh	Endpoint0&4 buffer start address low byte	xxxx xxxxb
UEP0_DMA	ECh	16-bit SFR consists of UEP0_DMA_L and UEP0 DMA H	0xxxh
UEP1_DMA_H	EFh	Endpoint1 buffer start address high byte	0000 0xxxb
UEP1_DMA_L	EEh	Endpoint1 buffer start address low byte	xxxx xxxxb
UEP1_DMA	EEh	16-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H	0xxxh
UEP2_DMA_H	E5h	Endpoint2 buffer start address high byte	0000 0xxxb
UEP2_DMA_L	E4h	Endpoint2 buffer start address low byte	xxxx xxxxb
UEP2_DMA	E4h	16-bit SFR consists of UEP2_DMA_L and UEP2_DMA_H	0xxxh
UEP3_DMA_H	E7h	Endpoint3 buffer start address high byte	0000 0xxxb
UEP3_DMA_L	E6h	Endpoint3 buffer start address low byte	xxxx xxxxb
UEP3_DMA	E6h	16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H	0xxxh

USB device physical port control register (UDEV_CTRL), controlled by bUC_RESET_SIE reset:

Bit	Name	Access	Description	Reset value
7	bUD_PD_DIS	RW	USB UDP/UDM pin internal pull-down resistor disable 1: Disable internal pull-down resistor. 0: Enable internal pull-down resistor. This bit also can be used in GPIO mode to provide pull-down resistor.	0
6	Reserved	RO	Reserved	0
5	bUD_DP_PIN	RO	Current UDP pin status	х

			0: Low level.	
			1: High level.	
			Current UDM pin status	
4	bUD_DM_PIN	RO	0: Low level.	х
			1: High level.	
3	Reserved	RO	Reserved	0
			USB device physical port low speed mode enable bit	
2	bUD_LOW_SPEED	RW	1: Low speed (1.5Mbps) mode.	0
			0: Full speed (12Mbps) mode.	
1	LUD CD DIT	DW	USB device mode general purpose flag	0
1	bUD_GP_BIT	RW	User-defined. Can be reset and set by software.	0
			USB device physical port enable	
0	bUD_PORT_EN	RW	1: Enable physical port.	0
			0: Disable physical port.	

Endpoint n control register (UEPn_CTRL):

Bit	Name	Access	Description	Reset value
7	bUEP_R_TOG	RW	Expected data toggle flag of USB endpoint n receiving (SETUP/OUT):1: Expected DATA1.0: Expected DATA0.	0
6	bUEP_T_TOG	RW	Prepared data toggle flag of USB endpoint n transmittal (IN): 1: Send DATA1. 0: Send DATA0.	0
5	Reserved	RO	Reserved	0
4	bUEP_AUTO_TOG	RW	 Auto toggle enable 1: Auto toggle. 0: Manual toggle. Only supports single-receive or single-transmit mode of endpoint1/2/3, not supported when RX_EN and TX_EN of an endpoint are 1. 	0
3	bUEP_R_RES1	RW	High bit of handshake response type for USB endpoint n receiving (SETUP/OUT).	0
2	bUEP_R_RES0	RW	Low bit of handshake response type for USB endpoint n receiving (SETUP/OUT).	0
1	bUEP_T_RES1	RW	High bit of handshake response type for USB endpoint n transmittal (IN).	0
0	bUEP_T_RES0	RW	Low bit of handshake response type for USB endpoint n transmittal (IN).	0

MASK_UEP_R_RES consists of bUEP_R_RES1 and bUEP_R_RES0, used to indicate handshake response type for USB endpoint n receiver (SETUP/OUT):

00: ACK or ready.

01: Timeout/no response, for real-time/isochronous transfer of non-endpoint0.

10: NAK or busy.

11: STALL or error.

MASK_UEP_T_RES consists of bUEP_T_RES1 and bUEP_T_RES0, used to indicate handshake response type for USB endpoint n transmitter (IN):

00: DATA0/DATA1 or expected ACK.

01: DATA0/DATA1 and expected no response, for real-time/isochronous transfer of non-endpoint0.

10: NAK or busy.

11: STALL or error.

Endpoint n transmittal length register (UEPn_T_LEN):

Bit	Name	Access	Description	Reset value
[7:0]	bUEPn_T_LEN	DW	Endpoint n transmittal length, $(n = 0/1/3/4)$.	xxh
[7:0]	bUEP2_T_LEN	RW	Endpoint2 transmittal length.	00h

USB endpoint1/4 mode control register (UEP4_1_MOD):

Bit	Name	Access	Description	Reset value
7	bUEP1_RX_EN	RW	USB endpoint1 receiving (OUT) enable: 1: Enable. 0: Disable.	0
6	bUEP1_TX_EN	RW	USB endpoint1 transmittal (IN) enable: 1: Enable. 0: Disable.	0
5	Reserved	RO	Reserved	0
4	bUEP1_BUF_MOD	RW	Endpoint1 buffer mode control	0
3	bUEP4_RX_EN	R0	USB endpoint4 receiving (OUT) enable: 1: Enable. 0: Disable.	0
2	bUEP4_TX_EN	RW	USB endpoint4 transmittal (IN) enable: 1: Enable. 0: Disable.	0
[1:0]	Reserved	RO	Reserved	00b

Configuration of buffer mode of endpoint0 and endpoint4 by bUEP4_RX_EN bit and bUEP4_TX_EN bit. Refer to the following table.

bUEP4_RX_EN	bUEP4_TX_EN	Description: buffer start address is UEP0_DMA
0	0	Single 64-byte buffer for endpoint0 receiving&transmittal (OUT&IN).
1	0	Single 64-byte buffer for endpoint0 receiving&transmittal (OUT & IN)
1	0	and single 64-byte buffer for endpoint4 receiving (OUT), total=128 bytes
0	1	Single 64-byte buffer for endpoint0 receiving&transmittal (OUT&IN)
0	1	and single 64-byte buffer for endpoint4 transmittal (IN), total=128 bytes
1	1	Single 64-byte buffer for endpoint0 receiving&transmittal (OUT & IN) +
1	1	64-byte buffer for endpoint4 receiving (OUT) + 64-byte buffer for

Table 16.3.2 Buffer mode of endpoint0 and endpoint4

	endpoint4 transmittal (IN), total=192bytes.
	Start address UEP0_DMA+0: endpoint0 receiving & transmittal.
	Start address UEP0_DMA+64: endpoint4 receiving.
	Start address UEP0_DMA+128: endpoint4 transmittal.

USB endpoint2/3 mode control register (UEP2_3_MOD):

Bit	Name	Access	Description	Reset value
			USB endpoint3 receiving (OUT) enable:	
7	bUEP3_RX_EN	RW	1: Enable.	0
			0: Disable.	
			USB endpoint3 transmittal (IN) enable:	
6	bUEP3_TX_EN	RW	1: Enable.	0
			0: Disable.	
5	Reserved	RO	Reserved	0
4	bUEP3_BUF_MOD	RW	Endpoint3 buffer mode control	0
			USB endpoint2 receiving (OUT) enable:	
3	bUEP2_RX_EN	R0	1: Enable.	0
			0: Disable.	
			USB endpoint2 transmittal (IN) enable:	
2	bUEP2_TX_EN	RW	1: Enable.	0
			0: Disable.	
1	Reserved	RO	Reserved	0
0	bUEP2_BUF_MOD	RW	Endpoint2 buffer mode control	0

Buffer mode of USB endpoint1/2/3 is controlled by bUEPn_RX_EN, bUEPn_TX_EN and bUEPn_BUF_MOD (n=1/2/3). Refer to the following table. In the double 64-byte buffer mode, the first 64-byte buffer is selected based on bUEP_*_TOG=0 and the last 64-byte buffer is selected based on bUEP_*_TOG=1 during USB transfer for automatic switch.

Table 16.3.3 Buffer mode of endpoint n (n=1/2/3)

bUEPn_RX_EN	bUEPn_TX_EN	bUEPn_BUF_MOD	Description: buffer start address is UEPn_DMA		
0	0	Х	Disable endpoint, and disable UEPn_DMA buffer		
1	0	0	Single 64-byte receiving buffer (OUT)		
1	0	1	Double 64-byte receiving buffer, selected by		
			bUEP_R_TOG.		
0	1	0	Single 64-byte transmittal buffer (IN)		
0	1	1	1	1	Double 64-byte transmittal buffer, selected by
0	1	1	bUEP_T_TOG.		
1	1	0	Single 64-byte receiving buffer (OUT). Single		
1	1	0	64-byte transmittal buffer (IN)		
			Double 64-byte receiving buffer, selected by		
1	1	1	bUEP_R_TOG. Double 64-byte transmittal buffer,		
1		1 1	selected by bUEP_T_TOG, total=256 bytes.		
			Start address UEPn_DMA+0: endpoint receiving		

when bUEP_R_TOG=0. Start address UEPn DMA+64: endpoint receiving
when bUEP_R_TOG=1.
Start address UEPn_DMA+128: endpoint transmittal
when bUEP_T_TOG=0.
Start address UEPn_DMA+192: endpoint transmittal
when bUEP_T_TOG=1.

USB endpoint n buffer start address (UEPn_DMA) (n=0/1/2/3):

Bit	Name	Access	Description	Reset value
[7:0]	UEPn_DMA_H	RW	Endpoint n buffer start address high byte, only the low 3 bits are valid, and the high 5 bits are fixed to 0.	0xh
[7:0]	UEPn_DMA_L	RW	Endpoint n buffer start address low byte	xxh

Note: receiving data length >= *min (maximum packet length possible* + 2 *bytes,* 64 *bytes)*

17. Parameters

17.1 Absolute maximum ratings

Stresses at or above the absolute maximum ratings listed in the table below may cause permanent damage to the device.

Symbol		Min.	Max.	Unit	
TA		Fsys<40MHz	-40	85	°C
	Operating Fsys=48MHz and bLDO_CORE_VOL=1 (if necessary)		-40	70	°C
		Fsys=48MHz and bLDO_CORE_VOL=0	-20	70	°C
TAROM	Temperature for Flash-ROM/EEPROM erase/program operation (recommended)		-20	85	°C
TS	Storage temperature		-55	125	°C
VDD	Supply voltage (VDD is connected to power, GND to ground)		-0.4	7.0	V
V33	Internal USB supply voltage		-0.4	VDD+0.4	V
VIO	Voltage on input/output pins		-0.4	VDD+0.4	V
VIOU	Voltage on UDP/UDM pin		-0.4	V33+0.4	V
VIOHV		Voltage on P5.5/HVOD pin	-0.4	13	V

17.2 Electrical characteristics at 5V

Test conditions: TA=25°C, VDD=5V, Fsys=12MHz.

Symbol	Parameter description		Min.	Тур.	Max.	Unit
VDD5	VDD supply voltage	V33 is only connected to an external capacitor	3.7	5	6.5	V
	Internal LDO output voltage	$TA = -15 \sim 65^{\circ}C$	3.23	3.3	3.38	V
V33	(Automatically shorted to VDD during sleep)	$TA = -40 \sim 85^{\circ}C$	3.2	3.3	3.4	V

ē					
ICC48M5	Total supply current when Fsys=48MHz	6.3	7.4		mA
ICC12M5	Total supply current when Fsys=12MHz	2.5	3.0		mA
ICC750K5	Total supply current when Fsys=750KHz	1.4	1.6		mA
ISLP5	Total supply current after standby/normal sleep		1.1	1.4	mA
ISLP5L	Total supply current after power off/deep sleep bLDO_3V3_OFF=1, LDO disabled		3.5	12	uA
IADC5	ADC operating current		200	800	uA
ICMP5	CMP operating current		100	500	uA
ITKEY5	Touch-key capacitor charging current	35	50	70	uA
VIL5	Input low level voltage	0		1.2	V
VIH5	Input high level voltage	2.4		VDD	V
VOL5	Output low level voltage (I _{IL} =15mA)				V
VOH5	Output high level voltage (I _{OH} =6mA)	VDD-0.4			V
VOH5U	UDP/UDM output high level voltage (I _{OH} =8mA)	V33-0.4			V
VHVOD	Voltage on P5.5/HVOD pin (not output / high impedance)	0	12	12.6	V
IIN	The input current without pull-up resistor	-5	0	5	uA
IDN5	The input current with pull-down resistor	-35	-70	-140	uA
IUP5	The input current with pull-up resistor	35	70	140	uA
IUP5X	The input current with pull-up resistor from low to high	^w 250 400 6		600	uA
Rsw5	ON resistance of the analog switch of ADC and other modules	500	700	1350	Ω
Vpot	Power on reset threshold	2.3	4.0	4.6	V

17.3 Electrical characteristics at 3.3V

Test conditions: TA=25°C, VDD=V33=3.3V, Fsys=12MHz.

Symbol	Pa	arameter description	Min.	Тур.	Max.	Unit
VDD2	VDD supply	V33 is shorted to VDD, with USB enabled	3.0	3.3	3.6	V
VDD3	voltage	V33 is shorted to VDD, with USB disabled	2.7	3.3	3.6	V
ICC48M3	Total suppl	y current when Fsys=48MHz	6.3	7.4		mA
ICC12M3	Total supply current when Fsys=12MHz		2.5	3.0		mA
ICC750K3	Total supply current when Fsys=750KHz		1.4	1.6		mA
ISLP3	Total supply current after standby/normal sleep			1.1	1.3	mA
ISLP3L	Total supply current after power off/deep sleep bLDO_3V3_OFF=1, LDO disabled			1.7	8	uA
IADC3	Al	DC operating current		180	700	uA
ICMP3	CMP operating current			70	300	uA
ITKEY3	Touch-key capacitor charging current		35	50	70	uA
VIL3	Input low level voltage		0		0.8	V
VIH3	Inp	out high level voltage	1.9		VDD	V

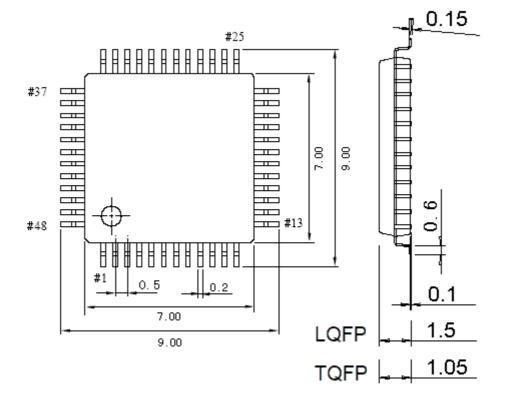
VOL3	Output low level voltage (I _{IL} =10mA)			0.4	V
VOH3	Output high level voltage (I _{OH} =4mA)	VDD-0.4			V
VOH3U	UDP/UDM output high level voltage (I _{OH} =8mA)	V33-0.4			V
VHVOD	Voltage on P5.5/HVOD pin (not output / high impedance)012		12	12.6	V
IIN	The input current without pull-up resistor	-5	0	5	uA
IDN3	The input current with pull-down resistor	-15	-30	-60	uA
IUP3	The input current with pull-up resistor	15	30	60	uA
IUP3X	The input current with pull-up resistor from low to high	100	170	250	uA
Rsw3	ON resistance of the analog switch of ADC and other modules	600	1000	2500	Ω
Vpot	Power on reset threshold	2.3	2.7	3.0	V

17.4 Timing parameters

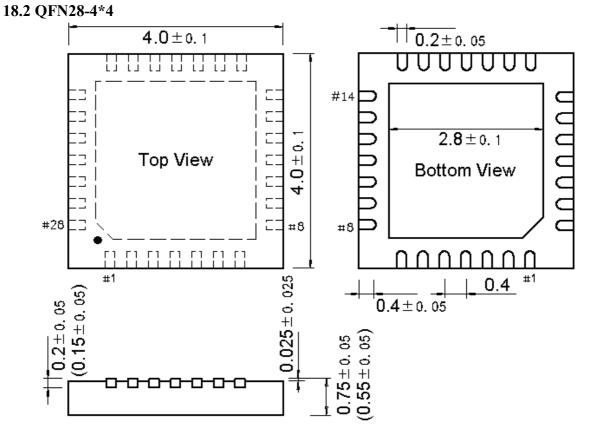
Test conditions: TA=25°C, VDD=5V or VDD=V33=3.3V, Fsys=12MHz.

Symbol	Parameter des	scription	Min.	Тур.	Max.	Unit
Fxt	External crystal frequency or XI input clock frequency		6	24	24	MHz
Face	Internal clock frequency after calibration when	TA=-15~65°C	23.64	24	24.36	MHz
Fosc	VDD>=3V	TA=-40~85°C	23.5	24	24.5	MHz
Fosc3	Internal clock frequency after calibration when VDD<3V		23.28	24	24.72	MHz
Fpll	Frequency after PLL		24	96	96	MHz
Fusb4x	USB sampling clock frequency, with USB function enabled		47.04	48	48.96	MHz
Г	System clock frequency (VDD>=3V)		0.1	12	48	MHz
Fsys	System clock freque	ncy (VDD<3V)	0.1	12	24	MHz
Tpor	Power on res	et delay	8	11	15	mS
Trst	External input valid re	eset signal width	70			nS
Trdl	Thermal reset delay		20	30	50	uS
Twdc	Watchdog overflow / Timer calculation formula		131072 * (0x100 - WDC	G_COUNT)	/ Fsys
Tusp	USB automatic suspend detection time		4	5	6	mS
Twaksb	Time to wake up from st	0.5	0.8	3	uS	
Twakdp	Time to wake up from pov	wer down/deep sleep	120	200	1000	uS

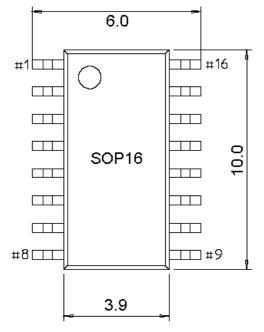
17.5 Other parameters

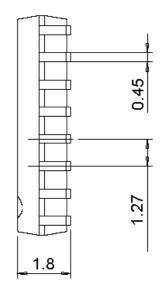

Test conditions: TA=25°C, VDD=4.5V~5.5V or VDD=V33=3.0V~3.6V.

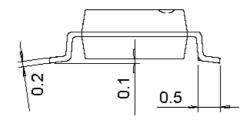
Symbol	Parameter description	Min.	Тур.	Max.	Unit
RTS	Measurement range of TS			90	°C
ATSC	Measurement error of TS after software calibration		±7		°C


CTSV	Sensitivity of TS (voltage/temperature coefficient)	4	5	6	mV/°C
TERPG	Time for Flash-ROM/EEPROM single erase/program operation			8	mS
NEPCE	Erase/program cycle endurance	10K	Not guaranteed 100K		times
TDR	Flash-ROM/EEPROM data hold capability	10			years
VESD	ESD voltage on input/output pins	4K	Not guaranteed 8K		V

18. Package information


18.1 LQFP48-7*7




http://wch.cn

18.3 SOP16-150mil

19. Revision history

Version	Date	Description
V1.0	June 21, 2018	Initial release
V1.1	November 8, 2018	Program routine file name deleted. VDD3 modified. INTX added.
V1.2	May 28, 2019	Register is renamed POWER_CFG. It is recommended to disable global interrupt during sleep. Note that V33 will be automatically shorted to VDD during sleep. Package information added.
V1.3	November 29, 2019	Typo in Section 12.3 corrected (PWM_CTRL). Typo in Section 15.4 corrected.
V1.4	October 21, 2021	bUEP_AUTO_TOG in Section 16.3 modified. System clock limited not more than 48MHz. Note that USB pins are not connected in series with external resistors.
V1.5	January 05, 2022	Expression optimized: Directly write 0 to reset, or write 1 to the corresponding bit in the register to reset.